426
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A novel feature selection scheme for high-dimensional data sets: four-Staged Feature Selection

Pages 1140-1154 | Received 08 Oct 2014, Accepted 06 Sep 2015, Published online: 12 Oct 2015

References

  • U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonucleotide arrays, Proc. Nat. Acad. Sci. U.S.A. 96 (1999), pp. 6745–6750. doi: 10.1073/pnas.96.12.6745
  • C. Ambroise and G.J. McLachlan, Selection bias in gene extraction on the basis of microarray gene-expression data, Proc. Nat. Acad. Sci. U.S.A. 99 (2002), pp. 6562–6566. doi: 10.1073/pnas.102102699
  • P. Baldi and A. Long, A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes, Bioinformatics 17 (2001), pp. 509–519. doi: 10.1093/bioinformatics/17.6.509
  • V. Bolon-Canedo, N. Sanchez-Marono, and A. Alonso-Betanzos, An ensemble of filters and classifiers for microarray data classification, Pattern Recogn. 45 (2011), pp. 531–539. doi: 10.1016/j.patcog.2011.06.006
  • B. Chandra and M. Gupta, An efficient statistical feature selection approach for classification of gene expression data, J. Biomed. Inform. 44 (2011), pp. 529–535. doi: 10.1016/j.jbi.2011.01.001
  • R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd ed., John Wiley and Sons, New York, 2001.
  • T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander, Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, J. Sci. 286 (1999), pp. 531–537. doi: 10.1126/science.286.5439.531
  • G.J. Gordon, R.V. Jensen, L.L. Hsiao, S.R. Gullans, J.E. Blumenstock, S. Ramaswamy, W.G. Richards, D.J. Sugarbaker, and R. Bueno, Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and Mesothelioma, Cancer Res. 62 (2002), pp. 4963–4967.
  • I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature Extraction. Foundations and Applications, Springer, New York, 2006.
  • W. Härdle and L. Simar, Applied Multivariate Statistical Analysis, Springer-Verlag, Berlin Heidelberg, 2007.
  • S. Haykin, Neural Networks and Learning Machines, Pearson, Upper Saddle River, NJ, 2009.
  • P. Jafari and F. Azuaje, An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors, BMC Med. Inform. Decis. Making 6 (2006), p. 27. doi: 10.1186/1472-6947-6-27
  • K. Kira and L.A. Rendell, A Practical Approach to Feature Selection. Proceedings of the 9th International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1992, pp. 249–256.
  • I. Kononenk, Estimating Features: Analysis and Extension of RELIEF. Proceedings of the 6th European Conference on Machine Learning, Springer-Verlag New York, Inc., Secaucus, NJ, 1994, pp. 171–182.
  • C. Lee and Y. Leu, A novel hybrid feature selection method for microarray data analysis, Appl. Soft Comput. 11 (2011), pp. 208–213. doi: 10.1016/j.asoc.2009.11.010
  • L. Li, T.A. Darden, C.R. Weinberg, A.J. Levine, and L.G. Pedersen, Gene assessment and sample classification for gene expression data using a genetic algorithm/ k-nearest neighbour method, Comb. Chem. High T. Scr. 4 (2001), pp. 727–739.
  • Q. Li, A. Bender, J. Pei, and L. Lai, A large descriptor set and a probabilistic kernel-based classifier significantly improve druglikeness classification, J. Chem. Inf. Model. 47 (2007), pp. 1776–1786. doi: 10.1021/ci700107y
  • T.P. Lu, M.H. Tsai, J.M. Lee, C.P. Hsu, P.C. Chen, C.W. Lin, J.Y. Shih, P.C. Yang, C.K. Hsiao, L.C. Lai, and E.Y. Chuang, Identification of a novel biomarker, SEMA5A, for non-small cell lung carcinoma in nonsmoking women, Cancer Epidem. Biomar. 19 (2010), pp. 2590–2597. doi: 10.1158/1055-9965.EPI-10-0332
  • NCBI, Gene Expression Omnibus Dataset Browser (GEO Dataset Browser). Available at http://www.ncbi.nlm.nih.gov/sites/GDSbrowser/ (Accessed June 2013)
  • E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn, and L.A. Liotta, Use of proteomic patterns in serum to identify ovarian cancer, Lancet 359 (2002), pp. 572–577. doi: 10.1016/S0140-6736(02)07746-2
  • S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T.P., S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. Lander, and T.R. Golub, Prediction of central nervous system embryonal tumour outcome based on gene expression, Lett. Nature. 415 (2002), pp. 436–442. doi: 10.1038/415436a
  • C.R. Rao, Linear Statistical Inference and its Application, John Wiley and Sons, New York, 1965.
  • K. Ridge, Kent Ridge Bio-Medical Dataset. Available at http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html (Accessed May 2012).
  • M. Robnik-Sikonja and I. Kononenko, Theoretical and empirical analysis of relief and rReliefF, Mach. Learn. J. 53 (2003), pp. 23–69. doi: 10.1023/A:1025667309714
  • R. Ruiz, J.C. Riquelme, and J.S. Aguliar-Ruiz, Incremental wrapper-based gene selection from microarray data for cancer classification, J. Pattern Recogn. 39 (2006), pp. 2383–2392. doi: 10.1016/j.patcog.2005.11.001
  • Y. Saeys, I. Inza, and P. Larranaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23 (2007), pp. 2507–2517. doi: 10.1093/bioinformatics/btm344
  • D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, P. Tamayo, A.A. Renshaw, A.V. D'Amico, J.P. Richie, E.S. Lander, M. Loda, P.W. Kantoff, T.R. Golub, and W.R. Sellers, Gene expression correlates of clinical prostate cancer behavior, Cancer Cell 1 (2002), pp. 203–209. doi: 10.1016/S1535-6108(02)00030-2
  • E. Tian, F. Zhan, R. Walker, E. Rasmussen, Y. Ma, B. Barlogie, and J.D. Jr Shaughnessy, The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma, N. Engl. J. Med. 349 (2003), pp. 2483–2494. doi: 10.1056/NEJMoa030847
  • V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
  • L. Xu, S.S. Shen, Y. Hoshida, A. Subramanian, K. Ross, J.P. Brunet, S.N. Wagner, S. Ramaswamy, J.P. Mesirov, and R.O. Hynes. Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases, Mol. Cancer Res. 6 (2008), pp. 760–769. doi: 10.1158/1541-7786.MCR-07-0344
  • Z.R. Yang, R. Thomson, P. McNeil, and R.M. Esnouf, RONN: The Bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics 21 (2005), pp. 3369–3376. doi: 10.1093/bioinformatics/bti534
  • G. Zhang, A. Schetter, P. He, N. Funamizu, J. Gaedcke, B.M. Ghadimi, T. Ried, R. Hassan, H.G. Yfantis, D.H. Lee, C. Lacy, A. Maitra, N. Hanna, H.R. Alexander, and S.P. Hussain, DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma, PLoS One. 7 (2012), e31507. doi: 10.1371/journal.pone.0031507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.