1,529
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Simulated maximum likelihood estimation in joint models for multiple longitudinal markers and recurrent events of multiple types, in the presence of a terminal event

, , , , &
Pages 2756-2777 | Received 24 Sep 2015, Accepted 09 Nov 2016, Published online: 01 Dec 2016

References

  • I.A. Antonov and V.M. Saleev, An economic method of computing LPτ-sequences, USSR Comput. Math. Math. Phys. 19 (1979), pp. 252–256. doi: 10.1016/0041-5553(79)90085-5
  • S. Asmussen and P.W. Glynn, Chapter IX: Numerical integration, in Stochastic Simulation: Algorithms and Analysis: Algorithms and Analysis, Stochastic Modelling and Applied Probability, Springer, New York, 2007, pp. 260–273.
  • T. Baghfalaki, M. Ganjali, and R. Hashemi, Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions, J. Biopharm. Stat. 24 (2014), pp. 834–855. doi: 10.1080/10543406.2014.903657
  • P. Bratley and B.L. Fox, Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Softw. 14 (1988), pp. 88–100. doi: 10.1145/42288.214372
  • M. Braun, trustOptim: Trust region nonlinear optimization, efficient for sparse Hessians, 2013. Available at http://CRAN.R-project.org/package=trustOptim, r package version 0.8.3.
  • Y.-Y. Chi and J.G. Ibrahim, Joint models for multivariate longitudinal and multivariate survival data, Biometrics 62 (2006), pp. 432–445. doi: 10.1111/j.1541-0420.2005.00448.x
  • R.J. Cook and J.F. Lawless, The Statistical Analysis of Recurrent Events, Statistics for Biology and Health, Springer, New York, NY, 2007.
  • J. Dick, F.Y. Kuo, and I.H. Sloan, High-dimensional integration: The quasi-Monte Carlo way, Acta Numer. 22 (2013), pp. 133–288. doi: 10.1017/S0962492913000044
  • J. Dick and F. Pillichshammer, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, New York, NY, 2010.
  • R.M. Elashoff, G. Li, and N. Li, A joint model for longitudinal measurements and survival data in the presence of multiple failure types, Biometrics 64 (2008), pp. 762–771. doi: 10.1111/j.1541-0420.2007.00952.x
  • K.T. Fang, Y. Wang, and P.M. Bentler, Some applications of number-theoretic methods in statistics, Statist. Sci. 9 (1994), pp. 416–428. doi: 10.1214/ss/1177010392
  • C.L. Faucett and D.C. Thomas, Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach, Stat. Med. 15 (1996), pp. 1663–1685. doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
  • J.E. Gentle, Chapter 3. Quasirandom numbers, in Random Number Generation and Monte Carlo Methods, 2nd ed., Springer, New York, 2005, p. 387.
  • R.B. Geskus, Which individuals make dropout informative? Stat. Methods Med. Res. 23 (2014), pp. 91–106. doi: 10.1177/0962280212445840
  • P.I. Gilbert and R.I. Varadhan, numDeriv: Accurate Numerical Derivatives, 2012. Available at http://CRAN.R-project.org/package=numDeriv, r package version 2014.2-1.
  • P. Glasserman, Chapter 5. Quasi-Monte Carlo, in Monte Carlo Methods in Financial Engineering, Springer, New York, 2004, pp. 281–339.
  • J. González, F. Tuerlinckx, P. De Boeck, and R. Cools, Numerical integration in logistic-normal models, Comput. Statist. Data Anal. 51 (2006), pp. 1535–1548. doi: 10.1016/j.csda.2006.05.003
  • C. Gouriéroux and A. Monfort, Simulation based inference in models with heterogeneity, Annales d'Économie et de Statistique 20 (1990), pp. 69–107. doi: 10.2307/20075807
  • C. Gouriéroux and A. Monfort, Simulation-Based Econometric Methods, Oxford University Press, New York, 1997.
  • R. Gueorguieva, R. Rosenheck, and H. Lin, Joint modelling of longitudinal outcome and interval-censored competing risk dropout in a schizophrenia clinical trial, J. Roy. Statist. Soc. Ser. A 175 (2012), pp. 417–433. doi: 10.1111/j.1467-985X.2011.00719.x
  • V. Hajivassiliou, Some practical issues in maximum simulated likelihood, in Simulation-Based Inference in Econometrics: Methods and Applications, R. Mariano, T. Schuermann, and M.J. Weeks, eds., Cambridge University Press, Cambridge, 2000, pp. 71–99.
  • F. Heiss and V. Winschel, Likelihood approximation by numerical integration on sparse grids, J. Econometrics 144 (2008), pp. 62–80. doi: 10.1016/j.jeconom.2007.12.004
  • C.R. Henderson, Analysis of covariance in the mixed model: Higher-level, nonhomogeneous, and random regressions, Biometrics 38 (1982), pp. 623–640. doi: 10.2307/2530044
  • R. Henderson, P. Diggle, and A. Dobson, Joint modelling of longitudinal measurements and event time data, Biostatistics 1 (2000), pp. 465–480. doi: 10.1093/biostatistics/1.4.465
  • S. Joe and F.Y. Kuo, Remark on Algorithm 659: Implementing Sobol's quasirandom sequence generator, ACM Trans. Math. Softw. 29 (2003), pp. 49–57. doi: 10.1145/641876.641879
  • C. Lemieux, Chapter 5. Quasi-Monte Carlo constructions, in Monte Carlo and Quasi-Monte Carlo sampling, Springer, New York, 2009, pp. 139–200.
  • N. Li, R.M. Elashoff, and G. Li, Robust joint modeling of longitudinal measurements and competing risks failure time data, Biom. J. 51 (2009), pp. 19–30. doi: 10.1002/bimj.200810491
  • N. Li, R.M. Elashoff, G. Li, and J. Saver, Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial, Stat. Med. 29 (2010), pp. 546–557.
  • L. Liu and X. Huang, The use of Gaussian quadrature for estimation in frailty proportional hazards models, Stat. Med. 27 (2008), pp. 2665–2683. doi: 10.1002/sim.3077
  • L. Liu and X. Huang, Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome, J. Roy. Statist. Soc. Ser. C 58 (2009), pp. 65–81. doi: 10.1111/j.1467-9876.2008.00641.x
  • L. Liu, R.A. Wolfe, and X. Huang, Shared frailty models for recurrent events and a terminal event, Biometrics 60 (2004), pp. 747–756. doi: 10.1111/j.0006-341X.2004.00225.x
  • J.Z. Musoro, R.B. Geskus, and A.H. Zwinderman, A joint model for repeated events of different types and multiple longitudinal outcomes with application to a follow-up study of patients after kidney transplant, Biom. J. 57 (2014), pp. 185–200. doi: 10.1002/bimj.201300167
  • H. Niederreiter, Random number generation and quasi-Monte Carlo methods, in CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1992.
  • H. Niederreiter, Error bounds for quasi-Monte Carlo integration with uniform point sets, J. Comput. Appl. Math. 150 (2003), pp. 283–292. doi: 10.1016/S0377-0427(02)00665-9
  • T. Pillards and R. Cools, Using Box–Muller with low discrepancy points, in Computational Science and its Applications – ICCSA 2006: Lecture Notes in Computer Science, M.L. Gavrilova, O. Gervasi, V. Kumar, C.K. Tan, and D. Taniar, eds., Vol. 3984, Berlin, Heidelberg, Springer, 2006, pp. 780–788.
  • W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, NY, 2007.
  • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2014. Available at http://www.R-project.org/.
  • M. Rezaul Karim and S.L. Zeger, Generalized linear models with random effects; salamander mating revisited, Biometrics 48 (1992), pp. 631–644. doi: 10.2307/2532317
  • D. Rizopoulos, Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data, Biometrics 67 (2011), pp. 819–829. doi: 10.1111/j.1541-0420.2010.01546.x
  • H.J. Skaug, Automatic differentiation to facilitate maximum likelihood estimation in nonlinear random effects models, J. Comput. Graph. Statist. 11 (2002), pp. 458–470. doi: 10.1198/106186002760180617
  • I. Sousa, A review on joint modelling of longitudinal measurements and time-to-event, REVSTAT 9 (2011), pp. 57–81.
  • G.H. Struijk, R.C. Minnee, S.D. Koch, A.H. Zwinderman, K.A.M.I. van Donselaar-van der Pant, M.M. Idu, I.J.M. Bergeten, and F.J. Bemelman, Maintenance immunosuppressive therapy with everolimus preserves humoral immune responses, Kidney Int. 78 (2010), pp. 934–940. doi: 10.1038/ki.2010.269
  • Y.J. Sung and C.J. Geyer, Monte Carlo likelihood inference for missing data models, Ann. Statist. 35 (2007), pp. 990–1011. doi: 10.1214/009053606000001389
  • M.J. Sweeting and S.G. Thompson, Joint modelling of longitudinal and time-to-event data with application to predicting abdominal aortic aneurysm growth and rupture, Biom. J. 53 (2011), pp. 750–763. doi: 10.1002/bimj.201100052
  • A.A. Tsiatis and M. Davidian, Joint modeling of longitudinal and time-to-event data: An overview, Statist. Sinica 14 (2004), pp. 809–834.
  • S.M. Wulfsohn and A.A. Tsiatis, A joint model for survival and longitudinal data measured with error, Biometrics 53 (1997), pp. 330–339. doi: 10.2307/2533118
  • J. Xu and S.L. Zeger, Joint analysis of longitudinal data comprising repeated measures and times to events, Society 50 (2001), pp. 375–387.
  • M. Yu, N. Law, J. Taylor, and H. Sandler, Joint longitudinal-survival-cure models and their application to prostate cancer, Statist. Sinica 14 (2004), pp. 832–835.