177
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Functional principal component analysis in age–period–cohort analysis of body mass index data by gender and ethnicity

, &
Pages 901-917 | Received 10 Jun 2016, Accepted 16 Apr 2017, Published online: 04 May 2017

References

  • A. Bell and K. Jones, Bayesian informative priors with Yang and Lands hierarchical age-period-cohort model, Qual. Quantity 49 (2015), pp. 255–266. doi: 10.1007/s11135-013-9985-3
  • C. de Boor, A Practical Guide to Splines, Springer, New York, 1978.
  • W. Fu, A smoothing cohort model in age–period–cohort analysis with applications to homicide arrest rates and lung cancer mortality rates, Sociol. Methods Res. 36 (2008), pp. 327–361. doi: 10.1177/0049124107310637
  • K. Fukuda, Age–period–cohort decompositions using principal components and partial least squares, J. Stat. Comput. Simul. 81 (2011), pp. 1871–1878. doi: 10.1080/00949655.2010.507763
  • K. Fukuda, A simple method for age-period-cohort decomposition of firm survival data, Appl. Math. Comput. 219 (2012), pp. 741–747.
  • K. Fukuda, Principal component based generalized least squares approach for panel data, J. Stat. Comput. Simul. 86 (2016), pp. 874–890. doi: 10.1080/00949655.2015.1041954
  • P. Hall, H.-G. Müller, and F. Yao, Modelling sparse generalized longitudinal observations with latent Gaussian processes, J. R. Statist. Soc., Ser. B 70 (2008), pp. 703–723. doi: 10.1111/j.1467-9868.2008.00656.x
  • P. Hatzopoulos and S. Haberman, A dynamic parameterization modeling for the age-period-cohort mortality, Insur: Math. Econ. 49 (2011), pp. 155–174.
  • C. Heuer, Modeling of time trends and interactions in vital rates using restricted regression splines, Biometrics. 53 (1997), pp. 161–177. doi: 10.2307/2533105
  • J.S. Hodges, Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects, Chapman & Hall/CRC, New York, 2013.
  • T. Holford, Approaches to fitting age-period-cohort models with unrequal intervals, Stat. Med. 25 (2006), pp. 977–933. doi: 10.1002/sim.2253
  • J. Huang and L. Liu, Polynomial spline estimation and inference of proportional hazards regression models with flexible relative risk form, Biometrics. 62 (2006), pp. 793–802. doi: 10.1111/j.1541-0420.2005.00519.x
  • G.M. James, T.J. Hastie, and C.A. Sugar, Principal component models for sparse functional data, Biometrika. 83 (2000), pp. 587–602. doi: 10.1093/biomet/87.3.587
  • B. Jiang and K. Carriere, Age–period–cohort models using smoothing splines: a generalized additive model approach, Stat. Med. 33 (2014), pp. 595–606. doi: 10.1002/sim.5970
  • R.A. Johnson and D.W. Wichern, Applied Multivariate Statistical Analysis, Pearson Prentice-Hall, Upper Saddle River, NJ, 2007.
  • L. Knorr-Held and E. Rainer, Projections of lung cancer mortality in West germany: A case study in Bayesian prediction, Biostatistics 2 (2001), pp. 109–129. doi: 10.1093/biostatistics/2.1.109
  • J. Komlos and M. Brabec, The trend of mean BMI values of US adults, birth cohorts 1882–1986 indicates that the obesity epidemic began earlier that Hitherto thought, Amer. J. Human Biol. 22 (2010), pp. 631–638. doi: 10.1002/ajhb.21055
  • P.M. Krueger, K. Coleman-Minahan, and R.N. Rooks, Race/ethnicity, nativity and trends in BMI among US adults, Obesity 22 (2014), pp. 1739–1746. doi: 10.1002/oby.20744
  • P. McCullagh and J.A. Nelder, Generalized Linear Models, Chapman and Hall, London, 1989.
  • J.S. Morris, Functional Regression, Annu. Rev. Stat. Appl. 2 (2015), pp. 321–359. doi: 10.1146/annurev-statistics-010814-020413
  • C.L. Ogden and M.D. Carrol, Prevalence of Obesity among Children and Adolescents: United States, Trends 1963-1965 through 2007-2008, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, MD, 2010.
  • C.L. Ogden, M.D. Carroll, B.K. Kit, and K.M. Fegal, Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010, J. Amer. Med. Assoc. 307 (2012), pp. 483–490. doi: 10.1001/jama.2012.40
  • J.O. Ramsay and B.W. Silverman, Functional Data Analysis, 2nd ed., Springer, New York, 2005.
  • E. Reither, R. Masters, Y. Yang, D. Powers, H. Zheng, and K.C. Land, Should age–period–cohort studies return to the methodologies of the 1970s, Social Sci. Med. 128 (2015), pp. 356–565. doi: 10.1016/j.socscimed.2015.01.011
  • E. Reither, R.M. Hauser, and Y. Yang, Do birth cohorts matter? Age–period–cohort analyses of the obesity epidemic in the United States, Social Sci. Med. 69 (2009), pp. 1439–1448. doi: 10.1016/j.socscimed.2009.08.040
  • W.R. Robibson, R.L. Utz, K.M. Keyes, C.L. Martin, and Y. Yang, Birth cohort effects on abdominal obesity in the United States: The Silent Generation, Baby Boomers and Generation X, Int. J. Obes. 37 (2013), pp. 1129–1134. doi: 10.1038/ijo.2012.198
  • H. Scheffé, The Analysis of Variance, Wiley, New York, 1959.
  • B.A. Swinburn, I. Caterson, J.C. Seidell, and W.P. James, Diet, nutrition and the prevention of excess weight gain and obesity, Public. Health. Nutr. 7 (2004), pp. 123–146.
  • Y. Yang, W.J. Fu, and K.C. Land, A methodological comparison of age–period–cohort models: The intrinsic estimator and conventional generalized linear models, Sociol. Methodol. 34 (2004), pp. 75–110. doi: 10.1111/j.0081-1750.2004.00148.x
  • Y. Yang and K.C. Land, A mixed models approach to the age–period–cohort analysis of repeated cross-section surveys: Trends in verbal test scores, Sociol. Methodol. 36 (2006), pp. 75–97. doi: 10.1111/j.1467-9531.2006.00175.x
  • Y. Yang and K.C. Land, Age-period-cohort analysis of repeated cross-section surveys: Fixed or random effects? Sociol. Methods Res. 36 (2008), pp. 297–326. doi: 10.1177/0049124106292360
  • F. Yao, H.-G. Müller, and J.-L. Wang, Functional data analysis for sparse longitudinal data, J. Am. Stat. Assoc. 100 (2005), pp. 577–590. doi: 10.1198/016214504000001745
  • J. Ye, Y. Li, and Y. Guan, Joint modeling of longitudinal drug using pattern and time to first relapse in cocaine dependence treatment data, Ann. Appl. Stat. 9 (2015), pp. 1621–1642. doi: 10.1214/15-AOAS852
  • L. Zhou, J. Huang, J.G. Martinez, A. Maity, V. Baladandayuthapani, and R.J. Carroll, Reduced rank mixed effects models for spatially correlated hierarchical functional data, J. Am. Stat. Assoc. 105 (2010), pp. 390–400. doi: 10.1198/jasa.2010.tm08737

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.