170
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Power analysis of independence testing for three-way contingency tables of small sizes

ORCID Icon
Pages 2481-2498 | Received 15 Mar 2017, Accepted 29 Dec 2017, Published online: 12 Jan 2018

References

  • A. Agresti, Categorical Data Analysis, Wiley, New York, 2002.
  • A. Agresti and A. Gottard, Independence in multi-way contingency tables: S.N. Roy’s breakthroughs and later developments, J. Statist. Plann. Inference 137 (2007), pp. 3216–3226. doi: 10.1016/j.jspi.2007.03.006
  • A. Alin, Comparison of ordinary and penalized power-divergence test statistics for small and moderate samples in three-way contingency tables via simulation, Comm. Statist. Simulation Comput. 37 (2008), pp. 1593–1602. doi: 10.1080/03610910802050894
  • C.J. Anderson, The analysis of three-way contingency tables by three-mode association models, Psychometrika 61 (1996), pp. 465–483. doi: 10.1007/BF02294550
  • S. Bonnini, Testing for heterogeneity with categorical data: Permutation solution vs. bootstrap method, Comm. Statist. Theory Methods 43 (2014), pp. 906–917. doi: 10.1080/03610926.2013.799376
  • S. Bonnini, Combined tests for comparing mutabilities of two populations, in Topics in Statistical Simulation, Book of Proceedings of the Seventh International Workshop on Simulation 2013, Rimini, 21–25 May 2013, Springer, New York, 2014, pp. 67–78.
  • S. Bonnini, Nonparametric test on process capability, in Nonparametric Statistics, Proceedings of the second ISNPS Conference, R. Cao, W. Gonzalez Manteiga, and J. Romo, eds., Cadiz, June 2014, Springer, Switzerland, 2016, pp. 11–18.
  • S. Bonnini, Multivariate approach for comparative evaluations of customer satisfaction with application to transport services, Comm. Statist. Simulation Comput. 45 (2016), pp. 1554–1568. doi: 10.1080/03610918.2014.941685
  • E.J. Beh and P.J. Davy, Partitioning Pearson’s chi-squared statistic for a completely ordered three-way contingency table, Aust. N. Z. J. Stat. 40 (1998), pp. 465–477. doi: 10.1111/1467-842X.00050
  • J. Blitzstein and P. Diaconis, A sequential importance sampling algorithm for generating random graphs with prescribed degrees, Internet Math. 6 (2011), pp. 489–522. doi: 10.1080/15427951.2010.557277
  • S. Bonnini, L. Corain, M. Marozzi, and L. Salmaso, Nonparametric Hypothesis Testing. Rank and Permutation Methods with Applications in R, Wiley, Chichester, 2014.
  • S. Bonnini, N. Prodi, L. Salmaso, and C. Visentin, Permutation approaches for stochastic ordering, Comm. Statist. Theory Methods 43 (2014), pp. 2227–2235. doi: 10.1080/03610926.2013.788888
  • Y. Chen, P. Diaconis, S.P. Holmes, and J.S. Liu, Sequential Monte Carlo methods for statistical analysis of tables, J. Amer. Statist. Assoc. 100 (2005), pp. 109–120. doi: 10.1198/016214504000001303
  • Y. Chen, I.H. Dinwoodie, and S. Sullivant, Sequential importance sampling for multiway tables, Ann. Statist. 34 (2006), pp. 523–545. doi: 10.1214/009053605000000822
  • W.J. Conover, Practical Nonparametric Statistics, Wiley, New York, 1999.
  • N. Cressie and T. Read, Multinomial goodness-of-fit tests, J. R. Stat. Soc. Ser. C. Appl. Stat. Ser B Methodol 46 (1984), pp. 440–464.
  • M. Cryan and M. Dyer, A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant, J. Comput. Syst. Sci. 67 (2003), pp. 291–310. doi: 10.1016/S0022-0000(03)00014-X
  • M. Cryan, M. Dyer, L.A. Goldberg, M. Jerrum, and R. Martin, Rapidly mixing Markov chains for sampling contingency tables with a constant number of rows, SIAM J. Comput. 36 (2006), pp. 247–278. doi: 10.1137/S0097539703434243
  • J.A. De Loera and S. Onn, Markov bases of three-way tables are arbitrarily complicated, J. Symbolic Comput. 41 (2006), pp. 173–181. doi: 10.1016/j.jsc.2005.04.010
  • S. Desalvo and J.Y. Zhao, Random sampling of contingency tables via probabilistic divide-and-conquer, ArXiv preprint (2016).
  • P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), pp. 363–397. doi: 10.1214/aos/1030563990
  • A. Dobra and S. Sullivant, A divide-and-conquer algorithm for generating Markov bases of multi-way tables, Comput. Statist. 19 (2004), pp. 347–366. doi: 10.1007/BF03372101
  • G.S. Fishman, Counting contingency tables via multistage Markov chain Monte Carlo, J. Comput. Graph. Statist. 21 (2012), pp. 713–738. doi: 10.1080/10618600.2012.680369
  • R.A. Giancristofaro and S. Bonnini, Moment-based multivariate permutation tests for ordinal categorical data, J. Nonparametr. Stat. 20 (2008), pp. 383–393. doi: 10.1080/10485250802195440
  • R.A. Giancristofaro, S. Bonnini, and F. Pesarin, A permutation approach for testing heterogeneity in two-sample categorical variables, Stat. Comput. 19 (2009), pp. 209–216. doi: 10.1007/s11222-008-9085-8
  • R.A. Giancristofaro, S. Bonnini, L. Corain, and D. Vidotto, Environmental odor perception: Testing regional differences on heterogeneity with application to odor perceptions in the area of Este (Italy), Environmetrics 26 (2015), pp. 418–430. doi: 10.1002/env.2341
  • R.A. Giancristofaro, S. Bonnini, L. Corain, and L. Salmaso, Dependency and truncated forms of combinations in multivariate combination-based permutation tests and ordered categorical variables, J. Stat. Comput. Simul. 86 (2016), pp. 3608–3619. doi: 10.1080/00949655.2016.1177826
  • R.A. Giancristofaro, S. Bonnini, and L. Salmaso, Employment status and education/employment relationship of PhD graduates from the University of Ferrara, J. Appl. Stat. 36 (2009), pp. 1329–1344. doi: 10.1080/02664760802638108
  • D. Gokhale and S. Kullback, The information in contingency tables, Marcel Dekker, Inc., New York and Basel, 1978.
  • M. Goldstein, E. Wolf, and W. Dillon, On a test of independence for contingency tables, Comm. Statist. Theory Methods 5 (1976), pp. 159–169. doi: 10.1080/03610927808827340
  • L. Goodman and W. Kruskal, Measures of association for cross classifications, J. Amer. Statist. Assoc. 49 (1954), pp. 732–764.
  • L.N. Gray and J.S. Williams, Goodman and Kruskal’s tau b: Multiple and partial analogs, Sociol. Methods. Res. 10 (1981), pp. 50–62. doi: 10.1177/004912418101000105
  • R.A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an explanatory multi-modal factor analysis, UCLA Working Papers in Phonetics, Vol. 16, 1970, pp. 1–84.
  • M. Hollander and D.A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons, New York, Sydney, Tokyo, Mexico City, 1973.
  • S. Kang and M.D. Larsen, Tests of independence in incomplete multi-way tables using likelihood functions, J. Korean Statist. Soc. 41 (2012), pp. 189–198. doi: 10.1016/j.jkss.2011.08.003
  • R. Lombardo, Three-way association measure decompositions: The Delta index, J. Statist. Plann. Inference 141 (2011), pp. 1789–1799. doi: 10.1016/j.jspi.2010.11.029
  • R. Lombardo and E.J. Beh, Simple and multiple correspondence analysis for ordinal-scale variables using orthogonal polynomials, J. Appl. Stat. 37 (2010), pp. 2101–2116. doi: 10.1080/02664760903247692
  • F. Marcotorchino, Utilisation des Comparaisons par Pairesen Statistique des Contingences, Partie (I), Etude IBM F069, France, 1984.
  • K. Matusita, Decision rules, based on the distance for problems of fit, two samples and estimation, Ann. Math. Stat. 26 (1955), pp. 631–640. doi: 10.1214/aoms/1177728422
  • M.C. Pardo, An empirical investigation of Cressie and Read tests for the hypothesis of independence in three-way contingency tables, Kybernetika 32 (1996), pp. 175–183.
  • F. Pesarin, Multivariate Permutation Tests with Applications in Biostatistics, Wiley, Chichester, 2001.
  • F. Pesarin and L. Salmaso, Permutation Tests for Complex Data: Theory, Applications and Software, Wiley, Chichester, 2010.
  • M.L. Puri, and P.K. Sen, Nonparametric Methods in Multivariate Analysis, Wiley, New York, 1971.
  • R. Siciliano and A. Mooijaart, Three-factor association models for three-way contingency tables, Comput. Statist. Data Anal. 24 (1997), pp. 337–356. doi: 10.1016/S0167-9473(97)87024-7
  • B. Simonetti, E.J. Beh, and L. D’Ambra, The analysis of dependence for three ways contingency tables with ordinal variables: A case study of patient satisfaction data, J. Appl. Stat. 37 (2010), pp. 91–103. doi: 10.1080/02664760802653552
  • P. Sulewski, Two-by-two contingency table as a goodness-of-fit test, Comput. Methods Sci. Technol. 15 (2009), pp. 203–211. doi: 10.12921/cmst.2009.15.02.203-211
  • P. Sulewski, Modyfikacja testu niezależności, Wiadomości Statystyczne 10 (2013), pp. 1–19.
  • P. Sulewski, Moc testów niezależności w tablicy dwudzielczej 2×2, Wiadomości Statystyczne 8 (2016), pp. 1–17.
  • P. Sulewski, Moc testów niezależności w tablicy dwudzielczej większej niż 2×2, Przegląd Statystyczny 63 (2016), pp. 191–209.
  • P. Sulewski and R. Motyka, Power analysis of independence testing for contingency tables, Sci. J. Polish Naval Acad. 56 (2015), pp. 37–46.
  • L.R. Tucker, Implications of factor analysis of three-way matrices for measurement of change, in Problems in Measuring Change, C. W. Harris, ed., Univ. Wisconsin Press, Madison, 1963, pp. 122–137.
  • R. Yoshida, J. Xi, S. Wei, F. Zhou, and D. Haws, Semigroups and sequential importance sampling for multiway tables, ArXiv preprint (2011), arXiv:1111.6518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.