249
Views
9
CrossRef citations to date
0
Altmetric
Articles

Estimating the earthquake occurrence rates in Corinth Gulf (Greece) through Markovian arrival process modeling

, &
Pages 995-1020 | Received 12 Dec 2017, Accepted 30 Sep 2018, Published online: 09 Oct 2018

References

  • Aristotle University of Thessaloniki Seismological Network, Data from: Permanent Regional Seismological Network operated by the Aristotle University of Thessaloniki, International Federation of Digital Seismograph Networks. Other/Seismic Network, 1981; dataset available at http://dx.doi.org/doi:10.7914/SN/HT.
  • J.R. Artalejo, A. Gómez-Corral, and Q.M. He, Markovian arrivals in stochastic modelling: A survey and some new results, SORT 34 (2010), pp. 101–156.
  • S. Asmussen and G. Koole, Marked point processes as limits of markovian arrival streams, J. Appl. Probab. 30 (1993), pp. 365–372. doi: 10.2307/3214845
  • L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state markov chains, Ann. Math. Stat. 37 (1966), pp. 1554–1563. doi: 10.1214/aoms/1177699147
  • L. Bodrog, P. Buchholz, A. Heindl, A. Horváth, G. Horváth, I. Kolossváry, A. Mészáros, Z. Németh, J. Papp, P. Reinecke, M. Telek, and M. Vécsei, Program packages for computations with PH, ME distributions and MAP, RAP processes, User Manual; 2014. Available at http://webspn.hit.bme.hu/telek/tools/butools/.
  • P. Buchholz, J. Kriege, and I. Felko, Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications, Springer, Cham, 2014.
  • K.P. Burnham and D.R. Anderson, Model Selection and Multimodel Inference, 2nd ed., Springer-Verlag, New York, 2002.
  • I. Chakravarti, R. Laha, and J. Roy, Handbook of Methods of Applied Statistics-Volume 1: Techniques of Computation, Descriptive Methods, and Statistical Inference, John Wiley & Sons, Inc., New York-London-Sydney, 1967.
  • K. Christensen and Z. Olami, Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a Spring-Block model for earthquakes, J. Geophys. Res. 97 (1992), pp. 8729–8735. doi: 10.1029/92JB00427
  • R. Console, G. Falcone, V. Karakostas, M. Murru, E. Papadimitriou, and D. Rhoades, Renewal models and coseismic stress transfer in the Corinth Gulf, Greece, fault system, J. Geophys. Res. 118 (2013), pp. 3655–3673. doi: 10.1002/jgrb.50277
  • R. Console, A. Nardi, R. Carluccio, M. Murru, G. Falcone, and T. Parsons, A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (Southern Italy) region, Acta Geophys. 65 (2017), pp. 243–257. doi: 10.1007/s11600-017-0020-2
  • J.D. Cordeiro and J.P. Kharoufeh, Batch markovian arrival processes (BMAP), in Wiley Encyclopedia of Operations Research and Management Science, John Wiley & Sons, Hoboken, NJ, 2011.
  • A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B Stat. Methodol. 39 (1977), pp. 1–38.
  • R.A. Harris, Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res. 103 (1998), pp. 24347–24358. doi: 10.1029/98JB01576
  • Q.M. He, Construction of continuous time Markovian arrival processes, J. Syst. Sci. Syst. Eng. 19 (2010), pp. 351–366. doi: 10.1007/s11518-010-5139-5
  • Q.M. He, Fundamentals of Matrix-Analytic Methods, Springer, New York, 2014.
  • Q.M. He and M.F. Neuts, Markov chains with marked transitions, Stoch. Process. Appl. 74 (1998), pp. 37–52. doi: 10.1016/S0304-4149(97)00109-9
  • G. Horváth and H. Okamura, A fast EM algorithm for fitting marked Markovian arrival processes with a new special structure, in Comput. Perform. Eng. EPEW, Lecture Notes in Computer Science Vol. 8168, Springer, Berlin, Heidelberg, 2013, pp. 119–133.
  • G. Horváth and M. Telek, BuTools 2: A rich toolbox for Markovian performance evaluation, in Proceedings of the 10th EAI International Conference on Performance Evaluation Methodologies and Tools, ICST, ValueTools 2016, Brussels, Belgium, 2016, pp. 137–142.
  • G.C. King, R.S. Stein, and J. Lin, Static stress changes and the triggering of earthquakes, B. Seismol. Soc. Am. 84 (1994), pp. 935–953.
  • C. Kourouklas, E. Papadimitriou, V. Karakostas, and G. Tsaklidis, Long range correlations and probability distribution of the earthquake interevent time in Greece, in Proceedings of the 29th Panhellenic Statistics Conference on Risk Analysis in Enviroment and Economics. Bulletin of the Greek Statistical Institute, 2016, pp. 307–321.
  • S. Kullback and R.A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951), pp. 79–86. doi: 10.1214/aoms/1177729694
  • K. Leptokaropoulos, M. Staszek, S. Cielesta, P. Urban, D. Olszewska, and G. Lizurek, Time-dependent seismic hazard in Bobrek coal mine, Poland, assuming different magnitude distribution estimations, Acta Geophys. 65 (2017), pp. 493–505. doi: 10.1007/s11600-016-0002-9
  • S. Lu, Markov modulated Poisson process associated with state-dependent marks and its applications to the deep earthquakes, Ann. I. Stat. Math. 64 (2012), pp. 87–106. doi: 10.1007/s10463-010-0302-9
  • S. Lu, A continuous-time HMM approach to modeling the magnitude-frequency distribution of earthquakes, J. Appl. Stat. 44 (2017), pp. 71–88. doi: 10.1080/02664763.2016.1161736
  • D.M. Lucantoni, K.S. Meier-Hellstern, and M.F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. Appl. Probab. 22 (1990), pp. 676–705. doi: 10.2307/1427464
  • O. Mangira, R. Console, E. Papadimitriou, and G. Vasiliadis, A restricted linked stress release model (LSRM) for the Corinth Gulf (Greece), Tectonophysics 723 (2018), pp. 162–171. doi: 10.1016/j.tecto.2017.12.011
  • O. Mangira, G. Vasiliadis, and E. Papadimitriou, Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece), Acta Geophys. 65 (2017), pp. 517–531. doi: 10.1007/s11600-017-0031-z
  • M.V. Matthews, W.L. Ellsworth, and P.A. Reasenberg, A Brownian model for recurrent earthquakes, B. Seismol. Soc. Am. 92 (2002), pp. 2233–2250. doi: 10.1785/0120010267
  • A.J. Michael, Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes, B. Seismol. Soc. Am. 95 (2005), pp. 1594–1603. doi: 10.1785/0120030208
  • M.F. Neuts, A versatile Markovian point process, J. Appl. Probab. 16 (1979), pp. 764–779. doi: 10.2307/3213143
  • M.F. Neuts and J.M. Li, An algorithm for the P(n,t) matrices of a continuous BMAP, in Matrix-Analytic Methods in Stochastic Models, S. Chakravarthy and A.S. Alfa, eds., Vol. 183, Marcel Dekker, Inc., New York, 1997, pp. 7–19.
  • S.P. Nishenko and R. Buland, A generic recurrence interval distribution for earthquake forecasting, B. Seismol. Soc. Am. 77 (1987), pp. 1382–1399.
  • Y. Ogata and K. Katsura, Point-process models with linearly parametrized intensity for application to earthquake data, J. Appl. Probab. 23 (1986), pp. 291–310. doi: 10.2307/3214359
  • H. Okamura and T. Dohi, Faster maximum likelihood estimation algorithms for Markovian arrival processes, in Proceedings of 6th International Conference on Quantitative Evaluation of Systems (QEST2009), Vol. 9., Budapest, Hungary, 2009, pp. 73–82.
  • D. Olszewska, S. Lasocki, and K. Leptokaropoulos, Non-stationarity and internal correlations of the occurrence process of mining-induced seismic events, Acta Geophys. 65 (2017), pp. 507–515. doi: 10.1007/s11600-017-0024-y
  • K. Orfanogiannaki, D. Karlis, and G. Papadopoulos, Identifying seismicity levels via Poisson hidden Markov models, Pure Appl. Geophys. 167 (2010), pp. 919–931. doi: 10.1007/s00024-010-0088-y
  • C. Pertsinidou, G. Tsaklidis, E. Papadimitriou, and N. Limnios, Application of hidden semi-Markov models for the seismic hazard assessment of the North and South Aegean Sea, Greece, J. Appl. Stat. 44 (2017), pp. 1064–1085. doi: 10.1080/02664763.2016.1193724
  • A. Pievatolo and R. Rotondi, Statistical identification of seismicity phases, Geophys. J. Int. 173 (2008), pp. 942–957. doi: 10.1111/j.1365-246X.2008.03773.x
  • A. Rigo, H. Lyon-Caen, R. Armijo, A. Deschamps, D. Hatzfeld, K. Makropoulos, P. Papadimitriou, and I. Kassaras, A microseismic study in the western part of the Gulf of Corinth (Greece): Implications for large-scale normal faulting mechanisms, Geophys. J. Int. 126 (1996), pp. 663–688. doi: 10.1111/j.1365-246X.1996.tb04697.x
  • T. Rikitake, Probability of a great earthquake to recur in the Tokai district, Japan: Reevaluation based on newly-developed paleoseismology, plate tectonics, tsunami study, micro-seismicity and geodetic measurements, Earth Planets Space 51 (1999), pp. 147–157. doi: 10.1186/BF03352219
  • L. Shaochuan and D. Vere-Jones, Large occurrence patterns of New Zealand deep earthquakes: Characterization by use of a switching Poisson model, Pure App. Geophys. 168 (2011), pp. 1567–1585. doi: 10.1007/s00024-011-0263-9
  • R.S. Stein, The role of stress transfer in earthquake occurrence, Nature 402 (1999), pp. 605–609. doi: 10.1038/45144
  • M.A. Stephens, EDF statistics for goodness of fit and some comparisons, J. Amer. Statist. Assoc. 69 (1974), pp. 730–737. doi: 10.1080/01621459.1974.10480196
  • I. Votsi, N. Limnios, G. Tsaklidis, and E. Papadimitriou, Estimation of the expected number of earthquake occurrences based on semi-Markov models, Methodol. Comput. Appl. Probab. 14 (2012), pp. 685–703. doi: 10.1007/s11009-011-9257-4
  • I. Votsi, N. Limnios, G. Tsaklidis, and E. Papadimitriou, Hidden markov models revealing the stress field underlying the earthquake generation, Phys. A 392 (2013), pp. 2868–2885. doi: 10.1016/j.physa.2012.12.043
  • I. Votsi, N. Limnios, G. Tsaklidis, and E. Papadimitriou, Hidden semi-Markov modeling for the estimation of earthquake occurrence rates, Commun. Statist. Theory Methods 43 (2014), pp. 1484–1502. doi: 10.1080/03610926.2013.857414
  • T. Wang, M. Bebbington, and D. Harte, Markov-modulated Hawkes process with stepwise decay, Ann. Inst. Statist. Math. 64 (2012), pp. 521–544. doi: 10.1007/s10463-010-0320-7
  • T. Wang, J. Zhuang, K. Obara, and H. Tsuruoka, Hidden Markov modelling of sparse time series from non-volcanic tremor observations, J. R. Stat. Soc. C Appl. Stat. 66 (2017), pp. 691–715. doi: 10.1111/rssc.12194
  • P. Wessel and W.H. Smith, New, improved version of generic mapping tools released, Trans. Am. Geophys. Union 79 (1998), pp. 579–579. doi: 10.1029/98EO00426
  • Z. Xiaogu and D. Vere-Jones, Further applications of the stochastic stress release model to historical earthquake data, Tectonophysics 229 (1994), pp. 101–121. doi: 10.1016/0040-1951(94)90007-8
  • J. Zhuang, Statistical modelling of seismicity patterns before and after the 1990 Oct 5 Cape Palliser earthquake, New Zealand, New Zeal. J. Geol. Geop. 43 (2000), pp. 447–460. doi: 10.1080/00288306.2000.9514901
  • G. Zöller, S. Hainzl, Y. Ben-Zion, and M. Holschneider, Earthquake activity related to seismic cycles in a model for a heterogeneous strike-slip fault, Tectonophysics 423 (2006), pp. 137–145. doi: 10.1016/j.tecto.2006.03.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.