567
Views
16
CrossRef citations to date
0
Altmetric
Articles

An one-parameter compounding discrete distribution

ORCID Icon, ORCID Icon &
Pages 1935-1956 | Received 01 Jul 2019, Accepted 30 Jan 2021, Published online: 09 Feb 2021

References

  • M.A. Al-Osh and A.A. Alzaid, First-order integer-valued autoregressive (INAR (1)) process, J. Time Ser. Anal. 8 (1987), pp. 261–275.
  • E. Altun, A new zero-inflated regression model with application, J. Stat. Stat. Actuarial Sci. 11 (2018), pp. 73–80.
  • E. Altun, A new model for over-dispersed count data: Poisson quasi-Lindley regression model, Math. Sci. 13 (2019a), pp. 241–247.
  • E. Altun, A new generalization of geometric distribution with properties and applications, Commun. Stat. Simul. Comput. 49 (2019b), pp. 1–15.
  • E. Altun, A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models, Math. Slovaca 70 (2020), pp. 979–994.
  • J. Andersson and D. Karlis, A parametric time series model with covariates for integers in Z, Stat. Model. 14 (2014), pp. 135–156.
  • D. Bhati, P. Kumawat, and E. Gómez-Déniz, A new count model generated from mixed Poisson transmuted exponential family with an application to health care data, Commun. Stat. Theor. Meth.46 (2017), pp. 11060–11076.
  • P. Borges, M. Bourguignon, and F.F. Molinares, A generalised NGINAR (1) process with inflated-parameter geometric counting series, Aust. N. Z. J. Stat. 59 (2017), pp. 137–150.
  • M. Bourguignon, J. Rodrigues, and M. Santos-Neto, Extended Poisson INAR (1) processes with equidispersion, underdispersion and overdispersion, J. Appl. Stat. 46 (2019), pp. 101–118.
  • L. Cheng, S.R. Geedipally, and D. Lord, The Poisson–Weibull generalized linear model for analyzing motor vehicle crash data, Saf. Sci. 54 (2013), pp. 38–42.
  • E.G. Déniz, A new discrete distribution: properties and applications in medical care, J. Appl. Stat. 40 (2013), pp. 2760–2770.
  • M.S. Eliwa, E. Altun, M. El-Dawoody, and M. El-Morshedy, A new three-parameter discrete distribution with associated INAR (1) process and applications, IEEE Access. 8 (2020), pp. 91150–91162.
  • Y. Gencturk and A. Yigiter, Modelling claim number using a new mixture model: negative binomial gamma distribution, J. Stat. Comput. Simul. 86 (2016), pp. 1829–1839.
  • M.E. Ghitany and D.K. Al-Mutairi, Estimation methods for the discrete Poisson–Lindley distribution, J. Stat. Comput. Simul. 79 (2009), pp. 1–9.
  • T. Imoto, C.M. Ng, S.H. Ong, and S. Chakraborty, A modified Conway–Maxwell–Poisson type binomial distribution and its applications, Commun. Stat.-Theor. Meth. 46 (2017), pp. 12210–12225.
  • M.A. Jazi, G. Jones, and C.D. Lai, Integer valued AR (1) with geometric innovations, J. Iranian Stat. Soc. 11 (2012), pp. 173–190.
  • H. Kim and S. Lee, On first-order integer-valued autoregressive process with Katz family innovations, J. Stat. Comput. Simul. 87 (2017), pp. 546–562.
  • T. Lívio, N. Mamode Khan, M. Bourguignon, and H. Bakouch, An INAR (1) model with Poisson–Lindley innovations, Econom. Bulletin 38 (2018), pp. 1505–1513.
  • D. Lord and S.R. Geedipally, The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros, Accident Anal. Prevent. 43 (2011), pp. 1738–1742.
  • R. Lugannani and S. Rice, Saddle point approximation for the distribution of the sum of independent random variables, Adv. Appl. Probab. 12 (1980), pp. 475–490.
  • E. Mahmoudi and H. Zakerzadeh, Generalized Poisson–Lindley distribution, Commun. Stat. Theor. Meth. 39 (2010), pp. 1785–1798.
  • E. McKenzie, Some simple models for discrete variate time series 1, JAWRA J. Amer Water Res Assoc. 21 (1985), pp. 645–650.
  • E. McKenzie, Autoregressive moving-average processes with negative binomial and geometric marginal distributions, Adv. Appl. Probab. 18 (1986), pp. 679–705.
  • J. Rodríguez-Avi, A. Conde-Síánchez, A.J. Sáez-Castillo, M.J. Olmo-Jiménez, and A.M. Martínez-Rodríguez, A generalized waring regression model for count data, Comput. Stat. Data. Anal. 53 (2009), pp. 3717–3725.
  • A.J. Sáez-Castillo and A. Conde-Sánchez, A hyper-Poisson regression model for overdispersed and underdispersed count data, Comput. Stat. Data. Anal. 61 (2013), pp. 148–157.
  • M. Sankaran, The discrete Poisson–Lindley distribution, Biometrics 26 (1970), pp. 145–149.
  • S. Schweer and C.H. Weiß, Compound Poisson INAR (1) processes: stochastic properties and testing for overdispersion, Comput. Stat. Data. Anal. 77 (2014), pp. 267–284.
  • S. Sen, S.S. Maiti, and N. Chandra, The xgamma distribution: statistical properties and application, J. Mod. Appl. Stat. Meth. 15 (2016), pp. 38–0.
  • R. Shanker and H. Fesshaye, On Poisson–Lindley distribution and its applications to biological sciences, Biom. Biostat. Int. J. 2 (2015), pp. 103–107.
  • G. Shmueli, T.P. Minka, J.B. Kadane, S. Borle, and P. Boatwright, A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution, J. R. Stat. Soc.: Ser. C (Appl. Stat.) 54 (2005), pp. 127–142.
  • M.M. Shoukri, M.H. Asyali, R. VanDorp, and D. Kelton, The Poisson inverse Gaussian regression model in the analysis of clustered counts data, J. Data. Sci. 2 (2004), pp. 17–32.
  • M.H. Tahir, M.A. Hussain, G.M. Cordeiro, M. El-Morshedy, and M.S. Eliwa, A new Kumaraswamy generalized family of distributions with properties, applications, and bivariate extension, Math. 8 (2020), pp. 1989.
  • W. Wongrin and W. Bodhisuwan, Generalized Poisson–Lindley linear model for count data, J. Appl. Stat. 44 (2017), pp. 2659–2671.
  • H. Zamani, N. Ismail, and P. Faroughi, Poisson-weighted exponential univariate version and regression model with applications, J. Math. Stat. 10 (2014), pp. 148–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.