397
Views
2
CrossRef citations to date
0
Altmetric
Articles

Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2228-2245 | Received 10 Feb 2020, Accepted 26 Feb 2021, Published online: 09 Mar 2021

References

  • D.I. Abrams, A.I. Goldman, C. Launer, J.A. Korvick, J.D. Neaton, L.R. Crane, M. Grodesky, S. Wakefield, K. Muth, S. Kornegay, D.L. Cohn, A. Harris, R. Luskin-Hawk, N. Markowitz, J.H. Sampson, M. Thompson, and L. Deyton, A comparative trial of didanosine or zalcitabine after treatment with zidovudine in patients with human immunodeficiency virus infection, New Engl. J. Med. 330 (1994), pp. 657–662.
  • E.R. Andrinopoulou, P.H. Eilers, J.J. Takkenberg, and D. Rizopoulos, Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using p-splines, Biometrics 74 (2018), pp. 685–693.
  • C. Armero, S. Cabras, M. Castellanos, S. Perra, A. Quirós, M. Oruezábal, and J. Sánchez-Rubio, Bayesian analysis of a disability model for lung cancer survival, Stat. Methods Med. Res. 25 (2016), pp. 336–351.
  • C. Armero, A. Forte, H. Perpiñán, M.J. Sanahuja, and S. Agustí, Bayesian joint modeling for assessing the progression of chronic kidney disease in children, Stat. Methods Med. Res. 27 (2018), pp. 298–311.
  • T. Baghfalaki, M. Ganjali, and R. Hashemi, Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions, J. Biopharm. Stat. 24 (2014), pp. 834–855.
  • E.R. Brown and J.G. Ibrahim, A Bayesian semiparametric joint hierarchical model for longitudinal and survival data, Biometrics 59 (2003), pp. 221–228.
  • E. Buta, S.S. O'Malley, and R. Gueorguieva, Bayesian joint modelling of longitudinal data on abstinence, frequency and intensity of drinking in alcoholism trials, J. R. Stat. Soc. Ser. A (Statist. Soc.) 181 (2018), pp. 869–888.
  • B.P. Carlin and T.A. Louis, Bayesian Methods for Data Analysis, CRC Press, London, 2008.
  • B. Carpenter, A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell, Stan: A probabilistic programming language, J. Stat. Softw. 76 (2017), pp. 1–32.
  • P.J. Catalano and L.M. Ryan, Bivariate latent variable models for clustered discrete and continuous outcomes, J. Amer. Statist. Assoc. 87 (1992), pp. 651–658.
  • A. Chakraborty, Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model, Stat. Methods Med. Res. 25 (2016), pp. 2714–2732.
  • A. Chakraborty and K. Das, Inferences for joint modelling of repeated ordinal scores and time to event data, Comput. Math. Methods Med. 11 (2010), pp. 281–95.
  • D.R. Cox and N. Wermuth, Response models for mixed binary and quantitative variables, Biometrika 79 (1992), pp. 441–461.
  • M. Daniels and K. Kass, Shrinkage estimators for covariance matrices, Biometrics 4 (2001), pp. 1173–1184.
  • V. De Gruttola and X.M. Tu, Modelling progression of CD4-lymphocyte count and its relationship to survival time, Biometrics 50 (1994), pp. 1003–1014.
  • C.L. Faucett and D.C. Thomas, Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach, Stat. Med. 15 (1996), pp. 1663–1685.
  • S. Fieuws, G. Verbeke, and G. Molenberghs, Random-effects models for multivariate repeated measures, Stat. Methods Med. Res. 16 (2007), pp. 387–397.
  • G.M. Fitzmaurice and N.M. Laird, Regression models for a bivariate discrete and continuous outcome with clustering, J. Amer. Statist. Assoc. 90 (1995), pp. 845–852.
  • A. Gelman, J. Carlin, H. Stern, and D. Savitz, Bayesian Data Analysis, London, 2004.
  • A.I. Goldman, B.P. Carlin, L.R. Crane, C. Launer, J.A. Korvick, L. Deyton, and D.I. Abrams, Response of cd4 lymphocytes and clinical consequences of treatment using ddi or ddc in patients with advanced hiv infection, JAIDS J. Acquir. Immune Defic. Syndr. 11 (1996), pp. 161–169.
  • R.V. Gueorguieva and A. Agresti, A correlated probit model for joint modeling of clustered binary and continuous responses, J. Amer. Statist. Assoc. 96 (2001), pp. 1102–1112.
  • X. Guo and B.P. Carlin, Separate and joint modeling of longitudinal and event time data using standard computer packages, Am. Stat. 58 (2004), pp. 16–24.
  • R. Henderson, P. Diggle, and A. Dobson, Joint modelling of longitudinal measurements and event time data, Biostatistics 1 (2000), pp. 465–480.
  • W. Hu, G. Li, and N. Li, A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data, Stat. Med. 28 (2009), pp. 1601–1619.
  • J.G. Ibrahim, M.H. Chen, and D. Sinha, Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials, Statist. Sinica 14 (2004), pp. 863–883.
  • J.G. Ibrahim, M.H. Chen, and D. Sinha, Bayesian Survival Analysis, Wiley Online Library, New York, 2005.
  • K. Li and S. Luo, Bayesian functional joint models for multivariate longitudinal and time-to-event data, Comput. Statist. Data Anal. 129 (2019), pp. 14–29.
  • K. Li and S. Luo, Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to alzheimer's disease, Stat. Methods Med. Res. 28 (2019), pp. 327–342.
  • X. Liu, M. Daniels, and B. Marcus, Regression models for a bivariate discrete and continuous outcome with clustering, J. Amer. Statist. Assoc. 90 (2001), pp. 429–438.
  • D.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, Winbugs-a Bayesian modelling framework: Concepts, structure, and extensibility, Stat. Comput. 10 (2000), pp. 325–337.
  • S. Luo, A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time, Stat. Med. 33 (2014), pp. 580–594.
  • G. Molenberghs and E. Lesaffre, Marginal modeling of correlated ordinal data using a multivariate plackett distribution, J. Amer. Statist. Assoc. 89 (1994), pp. 633–644.
  • G. Molenberghs, H. Thijs, M.G. Kenward, and G. Verbeke, Sensitivity analysis of continuous incomplete longitudinal outcomes, Stat. Neerl. 57 (2003), pp. 112–135.
  • G. Molenberghs and G. Verbeke, Models for Discrete Longitudinal Data, Springer, New York, 2005, pp. 481–488.
  • M. Plummer, JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) March 20–22, Vienna, Austria, 2003.
  • M. Pourahmadi and M. Daniels, Dynamic conditionally linear mixed models for longitudinal data, Biometrics 58 (2002), pp. 225–231.
  • M.M. Regan and P.J. Catalano, Bivariate dose-response modeling and risk estimation in developmental toxicology, J. Agric. Biol. Environ. Stat. 4 (1999), pp. 217–237.
  • D. Rizopoulos, Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data, Biometrics 67 (2011), pp. 819–829.
  • D. Rizopoulos, Joint Models for Longitudinal and Time-to-Event Data: With Applications in R, CRC press, New York, 2012.
  • D. Rizopoulos, The R package jmbayes for fitting joint models for longitudinal and time-to-event data using mcmc, preprint (2014). Available at arXiv, 1404.7625.
  • D. Rizopoulos and P. Ghosh, A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event, Stat. Med. 30 (2011), pp. 1366–1380.
  • D. Rizopoulos, G. Molenberghs, and E.M. Lesaffre, Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking, Biom. J. 59 (2017), pp. 1261–1276.
  • D. Rizopoulos, J.M. Taylor, J. Van Rosmalen, E.W. Steyerberg, and J.J. Takkenberg, Personalized screening intervals for biomarkers using joint models for longitudinal and survival data, Biostatistics 17 (2015), pp. 149–164.
  • D. Rizopoulos, G. Verbeke, and E. Lesaffre, Fully exponential laplace approximations for the joint modelling of survival and longitudinal data, J. R. Stat. Soc. Ser. B (Statist. Methodol.) 71 (2009), pp. 637–654.
  • D. Rizopoulos, G. Verbeke, and G. Molenberghs, Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes, Biometrics 66 (2010), pp. 20–29.
  • J. Roy and X. Lin, Latent variable models for longitudinal data with multiple continuous outcomes, Biometrics 56 (2000), pp. 1047–1054.
  • H. Rue, S. Martino, F. Lindgren, D. Simpson, A. Riebler, and E. Krainski, INLA: Functions which allow to perform a full Bayesian analysis of structured additive models using integrated nested laplace approximation, 2009, R package version 0.0.
  • M. Rue, E.R. Andrinopoulou, D. Alvares, C. Armero, A. Forte, and L. Blanch, Bayesian joint modeling of bivariate longitudinal and competing risks data: An application to study patient-ventilator asynchronies in critical care patients, Biom. J. 59 (2017), pp. 1184–1203.
  • S. Self and Y. Pawitan, Modeling a Marker of Disease Progression and Onset of Disease, Springer, Boston, MA, 1992.
  • D.J. Spiegelhalter, N.G. Best, B.P. Carlin, and A. Van Der Linde, Bayesian measures of model complexity and fit, J. R. Stat. Soc. Ser. B (Statist. Methodol.) 64 (2002), pp. 583–639.
  • G. Verbeke, G. Molenberghs, and D. Rizopoulos, Longitudinal Research with Latent Variables, Springer, Berlin, Heidelberg, 2010, pp. 37–96.
  • J. Wu, M.H. Chen, E.D. Schifano, J.G. Ibrahim, and J.D. Fisher, A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to hiv prevention trials, Stat. Med. 38 (2019), pp. 5565–5586.
  • M.S. Wulfsohn and A.A. Tsiatis, A joint model for survival and longitudinal data measured with error, Biometrics 53 (1997), pp. 330–339.
  • J. Yang, R. Li, P. Xiang, J. Hu, W. Lu, Z. Ni, and G. Cai, On the predictive performance of two Bayesian joint models: A simulation study, Comm. Statist. Simul. Comput. (2020), pp. 1–10. doi:https://doi.org/10.1080/03610918.2020.1804579.
  • H. Zhu, S.M. DeSantis, and S. Luo, Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective, Stat. Methods Med. Res. 27 (2018), pp. 1258–1270.
  • H. Zhu, J.G. Ibrahim, Y.Y. Chi, and N. Tang, Bayesian influence measures for joint models for longitudinal and survival data, Biometrics 68 (2012), pp. 954–964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.