2,427
Views
1
CrossRef citations to date
0
Altmetric
Articles

Confounding adjustment methods for multi-level treatment comparisons under lack of positivity and unknown model specification

, , , & ORCID Icon
Pages 2570-2592 | Received 20 Aug 2020, Accepted 29 Mar 2021, Published online: 07 Apr 2021

References

  • A. Abadie and G.W. Imbens, Large sample properties of matching estimators for average treatment effects, Econometrica 74 (2006), pp. 235–267.
  • A. Abadie and G.W. Imbens, Bias-corrected matching estimators for average treatment effects, J. Bus. Econ. Stat. 29 (2011), pp. 1–11.
  • M.C. Arienti, S.G. Cumming and S. Boutin, Empirical models of forest fire initial attack success probabilities: the effects of fuels, anthropogenic linear features, fire weather, and management, Canadian J. Forest Res. 36 (2006), pp. 3155–3166.
  • P.C. Austin, The performance of different propensity-score methods for estimating relative risks, J. Clin. Epidemiol. 61 (2008), pp. 537–545.
  • P.C. Austin, The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies, Stat. Med. 29 (2010), pp. 2137–2148.
  • P.C. Austin, P. Grootendorst and G.M. Anderson, A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study, Stat. Med. 26 (2007), pp. 734–753.
  • S. Cumming, Effective fire suppression in boreal forests, Canadian J. Forest Res. 35 (2005), pp. 772–786.
  • P. Feng, X.H. Zhou, Q.M. Zou, M.Y. Fan and X.S. Li, Generalized propensity score for estimating the average treatment effect of multiple treatments, Stat. Med. 31 (2012), pp. 681–697.
  • M. Frölich, Programme evaluation with multiple treatments, J. Econ. Surv. 18 (2004), pp. 181–224.
  • G. L. Gadbury, Q. Xiang, L. Yang, S. Barnes, G. P. Page, D. B. Allison and G. Gibson, Evaluating statistical methods using plasmode data sets in the age of massive public databases: an illustration using false discovery rates, PLoS Genet. 4 (2008), p. e1000098.
  • U. Halekoh, S. Højsgaard and J. Yan. The r package geepack for generalized estimating equations, J. Stat. Softw. 15 (2006), pp. 1–11.
  • M. Hernán and J. Robins, Causal Inference: What If, Chapman & Hall/CRC, Boca Raton, FL, 2020.
  • S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian J. Stat. 6 (1979), pp. 65–70.
  • D.G. Horvitz and D.J. Thompson, A generalization of sampling without replacement from a finite universe, J. Am. Stat. Assoc. 47 (1952), pp. 663–685.
  • M. Huber, M. Lechner and C. Wunsch, The performance of estimators based on the propensity score, J. Econom. 175 (2013), pp. 1–21.
  • J.D. Kang and J.L. Schafer, Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data, Stat. Sci. 22 (2007), pp. 523–539.
  • E.H. Kennedy, Semiparametric theory and empirical processes in causal inference, in Statistical Causal Inferences and Their Applications in Public Health Research, H. He, P. Wu, D.-G. Chen, eds., Springer, Cham, 2016, pp. 141–167.
  • C. Kooperberg, polspline: Polynomial Spline Routines, R package version 1.1.14, 2019. Available at https://CRAN.R-project.org/package=polspline.
  • C. Kooperberg, S. Bose and C.J. Stone, Polychotomous regression, J. Am. Stat. Assoc. 92 (1997), pp. 117–127.
  • N. Kreif, S. Gruber, R. Radice, R. Grieve and J.S. Sekhon, Evaluating treatment effectiveness under model misspecification: a comparison of targeted maximum likelihood estimation with bias-corrected matching, Stat. Methods. Med. Res. 25 (2016), pp. 2315–2336.
  • L. Li and T. Greene, A weighting analogue to pair matching in propensity score analysis, Int. J. Biostat. 9 (2013), pp. 215–234.
  • F. Li and F. Li, Propensity score weighting for causal inference with multiple treatments, Ann. Appl. Stat. 13 (2019), pp. 2389–2415.
  • F. Li, K.L. Morgan and A.M. Zaslavsky, Balancing covariates via propensity score weighting, J. Am. Stat. Assoc. 113 (2018), pp. 390–400.
  • A. Liaw and M. Wiener, Classification and regression by randomforest, R News 2 (2002), pp. 18–22. Available at https://CRAN.R-project.org/doc/Rnews/.
  • M.J. Lopez and R. Gutman, Estimation of causal effects with multiple treatments: a review and new ideas, Stat. Sci. 32 (2017), pp. 432–454.
  • J.K. Lunceford and M. Davidian, Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study, Stat. Med. 23 (2004), pp. 2937–2960.
  • M.A. Luque-Fernandez, M. Schomaker, B. Rachet and M.E. Schnitzer, Targeted maximum likelihood estimation for a binary treatment: A tutorial, Stat. Med. 37 (2018), pp. 2530–2546.
  • H. Mao, L. Li and T. Greene, Propensity score weighting analysis and treatment effect discovery, Stat. Methods. Med. Res. 28 (2019), pp. 2439–2454.
  • E.E. Moodie, T.S. Richardson and D.A. Stephens, Demystifying optimal dynamic treatment regimes, Biometrics 63 (2007), pp. 447–455.
  • S.A. Murphy, Optimal dynamic treatment regimes, J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 65 (2003), pp. 331–355.
  • E. Polley, E. LeDell, C. Kennedy and M. van der Laan, SuperLearner: Super Learner Prediction, R package version 2.0-24, 2018. Available at https://CRAN.R-project.org/package=SuperLearner.
  • J.M. Robins, Marginal structural models, in Proceedings of the Section on Bayesian Statistical Science, Vol. 1997, American Statistical Association, Alexandria, VA, 1998, pp. 1–10.
  • J.M. Robins, Marginal structural models versus structural nested models as tools for causal inference, in Statistical Models in Epidemiology, the Environment, and Clinical Trials, M. Halloran and B. Donald, eds., Springer, New York, 2000, pp. 95–133.
  • J.M. Robins, Optimal structural nested models for optimal sequential decisions, Proceedings of the Second Seattle Symposium in Biostatistics, D. Lin, P.J. Heagerty, eds., Springer, New York, 2004, pp. 189–326.
  • A.D. Scotina, F.L. Beaudoin and R. Gutman, Matching estimators for causal effects of multiple treatments, Stat. Methods. Med. Res. 29 (2019), pp. 1051–1066.
  • A. A. Siddique, M. E Schnitzer, A. Bahamyirou, G. Wang, T. H Holtz, G. B Migliori, G. Sotgiu, N. R Gandhi, M. H Vargas, D. Menzies and A. Benedetti, Causal inference with multiple concurrent medications: a comparison of methods and an application in multidrug-resistant tuberculosis, Stat. Methods. Med. Res. 28 (2019), pp. 3534–3549.
  • P-O. Tremblay, T. Duchesne, S. G. Cumming and J. A. Jones, Survival analysis and classification methods for forest fire size, PLoS One 13 (2018), p. e0189860.
  • M.J. Van der Laan, E.C. Polley and A.E. Hubbard, Super learner, Stat. Appl. Genet. Mol. Biol. 6 (2007), Article 25.
  • M.J. Van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational and Experimental Data, Springer, New York, 2011.
  • M.J. Van Der Laan and D. Rubin, Targeted maximum likelihood learning, Int. J. Biostat. 2 (2006), p. 28.
  • Wildfire Management Branch – Alberta Agriculture and Forestry, Historical Wildfire Database, 2015. Available at http://wildfire.alberta.ca/resources/historical-data/historical-wildfire-database.aspx.
  • S. Yang, G.W. Imbens, Z. Cui, D.E. Faries and Z. Kadziola, Propensity score matching and subclassification in observational studies with multi-level treatments, Biometrics 72 (2016), pp. 1055–1065.
  • K. Yoshida, S. Hernández-Díaz, D.H. Solomon, J.W. Jackson, J.J. Gagne, R.J. Glynn and J.M. Franklin, Matching weights to simultaneously compare three treatment groups: comparison to three-way matching, Epidemiology 28 (2017), pp. 387–395.
  • G. Zou, Assessment of risks by predicting counterfactuals, Stat. Med. 28 (2009), pp. 3761–3781.