344
Views
1
CrossRef citations to date
0
Altmetric
Articles

Sensitivity analysis of unmeasured confounding in causal inference based on exponential tilting and super learner

&
Pages 744-760 | Received 14 Sep 2020, Accepted 19 Oct 2021, Published online: 10 Nov 2021

References

  • T. Ahmad, A. Munir, S.H. Bhatti, M. Aftab, and M.A. Raza, Survival analysis of heart failure patients: A case study, PLoS One 12 (2017), pp. e0181001.
  • L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen, Classification and Regression Trees, CRC Press, Boca Raton, FL, 1984.
  • N.B. Carnegie, M. Harada, and J.L. Hill, Assessing sensitivity to unmeasured confounding using a simulated potential confounder, J. Res. Educ. Eff. 9 (2016), pp. 395–420.
  • J. Cornfield, W. Haenszel, E.C. Hammond, A.M. Lilienfeld, M.B. Shimkin, and E.L. Wynder, Smoking and lung cancer: recent evidence and a discussion of some questions, J. Natl. Cancer. Inst. 22 (1959), pp. 173–203.
  • R.H. Dehejia and S. Wahba, Causal effects in nonexperimental studies: reevaluating the evaluation of training programs, J. Am. Stat. Assoc. 94 (1999), pp. 1053–1062.
  • P. Ding and T.J. VanderWeele, Sensitivity analysis without assumptions, Epidemiology (Cambridge, Mass.) 27 (2016), pp. 368.
  • V. Dorie, M. Harada, N.B. Carnegie, and J. Hill, A flexible, interpretable framework for assessing sensitivity to unmeasured confounding, Stat. Med. 35 (2016), pp. 3453–3470.
  • R.H. Groenwold, D.B. Nelson, K.L. Nichol, A.W. Hoes, and E. Hak, Sensitivity analyses to estimate the potential impact of unmeasured confounding in causal research, Int. J. Epidemiol. 39 (2010), pp. 107–117.
  • T.J. Hastie and R.J. Tibshirani, Generalized Additive Models, vol. 43. CRC Press, Boca Raton, FL, 1990.
  • T.K. Ho, Random Decision Forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE, 1995.
  • J. Hogan, M. Daniels, and L. Hu, A Bayesian Perspective on Assessing Sensitivity to Assumptions About Unobserved Data, Handbook of Missing Data Methodology, Boca Raton, FL: Chapman & Hall/CRC Press, 2014. [Google Scholar]
  • G.W. Imbens, Sensitivity to exogeneity assumptions in program evaluation, Am. Econ. Rev. 93 (2003), pp. 126–132.
  • J. Jung, R. Shroff, A. Feller, and S. Goel, Algorithmic Decision Making in the Presence of Unmeasured Confounding. arXiv preprint arXiv:1805.01868, 2018.
  • R.J. LaLonde, Evaluating the econometric evaluations of training programs with experimental data, Am. Econ. Rev. 76 (1986), pp. 604–620.
  • D.Y. Lin, B.M. Psaty, and R.A. Kronmal, Assessing the sensitivity of regression results to unmeasured confounders in observational studies, Biometrics 54 (1998), pp. 948–963.
  • J.K. Lunceford and M. Davidian, Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study, Stat. Med.23 (2004), pp. 2937–2960.
  • L.C. McCandless and P. Gustafson, A comparison of bayesian and monte carlo sensitivity analysis for unmeasured confounding, Stat. Med. 36 (2017), pp. 2887–2901.
  • L.C. McCandless, P. Gustafson, and A. Levy, Bayesian sensitivity analysis for unmeasured confounding in observational studies, Stat. Med. 26 (2007), pp. 2331–2347.
  • J.S. Neyman, On the application of probability theory to agricultural experiments. Essay on principles. section 9.(translated and edited by D.M. Dabrowska and T.P. Speed, statistical science (1990), 5, 465–480), Ann. Agric. Sci. 10 (1923), pp. 1–51.
  • E.C. Polley, S. Rose, and M.J. Van der Laan, Super Learning. In Targeted Learning, M.J. Van der Laan, and S. Rose, eds., pp. 43–66. Springer, New York, 2011.
  • J.M. Robins, M.A. Hernan, and B. Brumback, Marginal structural models and causal inference in epidemiology, Epidemiology 11 (2000) pp. 550–560.
  • J.M. Robins, A. Rotnitzky, and L.P. Zhao, Analysis of semiparametric regression models for repeated outcomes in the presence of missing data, J. Am. Stat. Assoc. 90 (1995), pp. 106–121.
  • P. Rosenbaum, T. Colton, and P. Armitage, Encyclopedia of Biostatistics, Wiley, Hoboken, NJ, 1998.
  • P.R. Rosenbaum and D.B. Rubin, Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome, J. R. Stat. Soc. Ser. B (Methodol.) 45 (1983), pp. 212–218.
  • P.R. Rosenbaum and D.B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika 70 (1983), pp. 41–55.
  • A. Rotnitzky, Q. Lei, M. Sued, and J.M. Robins, Improved double-robust estimation in missing data and causal inference models, Biometrika 99 (2012), pp. 439–456.
  • A. Rotnitzky, J.M. Robins, and D.O. Scharfstein, Semiparametric regression for repeated outcomes with nonignorable nonresponse, J. Am. Stat. Assoc. 93 (1998), pp. 1321–1339.
  • J. Roy, K.J. Lum, and M.J. Daniels, A bayesian nonparametric approach to marginal structural models for point treatments and a continuous or survival outcome, Biostatistics 18 (2017), pp. 32–47.
  • D.B. Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies, J. Educ. Psychol. 66 (1974), pp. 688.
  • D. Scharfstein, A. McDermott, W. Olson, and F. Wiegand, Global sensitivity analysis for repeated measures studies with informative dropout: A fully parametric approach, Stat. Biopharm. Res. 6 (2014), pp. 338–348.
  • D.O. Scharfstein, A. Rotnitzky, and J.M. Robins, Adjusting for nonignorable drop-out using semiparametric nonresponse models, J. Am. Stat. Assoc.94 (1999), pp. 1096–1120.
  • Z. Tan, Regression and weighting methods for causal inference using instrumental variables, J. Am. Stat. Assoc. 101 (2006), pp. 1607–1618.
  • M.J. Van der Laan, E.C. Polley, and A.E. Hubbard, Super learner, Stat. Appl. Genet. Mol. Biol. 6 (2007), pp. 1544–6115.
  • M.J. Van der Laan and S. Rose, Targeted Learning: Causal Inference for Observational and Experimental Data, Springer Science & Business Media, New York, 2011.
  • T.J. VanderWeele and P. Ding, Sensitivity analysis in observational research: introducing the e-value, Ann. Intern. Med. 167 (2017), pp. 268–274.
  • V. Veitch and A. Zaveri, Sense and sensitivity analysis: simple post-hoc analysis of BIAS due to unobserved confounding. arXiv preprint arXiv:2003.01747, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.