202
Views
0
CrossRef citations to date
0
Altmetric
Articles

Functional principal component models for sparse and irregularly spaced data by Bayesian inference

Pages 1287-1317 | Received 20 Sep 2022, Accepted 26 Mar 2023, Published online: 05 Apr 2023

References

  • J.H. Albert and S. Chib, Bayesian analysis of binary and polychotomous response data, J. Am. Stat. Assoc. 88 (1993), pp. 669–679.
  • C.L. Alston, K.L. Mengersen, and A.N. Pettitt, Case Studies in Bayesian Statistical Modeling and Analysis, John Wiley & Sons, Ltd, United Kingdom, 2012.
  • G. Aneiros-Pérez, R. Cao, and J.M. Vilar-Fernández, Functional methods for time series prediction: A nonparametric approach, J. Forecast. 30 (2011), pp. 377–392.
  • G. Aneiros-Pérez, J. Vilar, and P. Raña, Short-term forecast of daily curves of electricity demand and price, Int. J. Electr. Power Energy Syst. 80 (2016), pp. 96–108.
  • S. Behseta and R.E. Kass, Hierarchical models for assessing variability among functions, Biometrika 92 (2005), pp. 419–434.
  • C.M. Bishop, Variational principal components. in Proceedings Ninth International Conference on Artificial Neural Networks, ICANN'99, IEE, 1999, pp. 509–514
  • D.M. Blei, A. Kucukelbir, and J.D. McAuliffe, Variational inference: A review for statisticians, J. Am. Stat. Assoc. 112 (2017), pp. 859–877.
  • H. Chen, B.R. Bakshi, and P.K. Goel, Bayesian latent variable regression via Gibbs sampling: Methodology and practical aspects, J. Chemom. 21 (2007), pp. 578–591.
  • Q. Chen, M.R. Elliott, and R.J.A. Little, Bayesian penalized spline model-based inference for finite population proportion in unequal probability sampling, Surv. Methodol. 36 (2010), pp. 23–34.
  • Y. Chikuse, Statistics on Special Manifolds, Lectures Notes in Statistics, Springer-Verlag, New York, NY, 2003.
  • C.M. Crainiceanu, A.-M. Staicu, and C.-Z. Di, Generalized multilevel functional regression, J. Amer. Statist. Assoc. 104 (2009), pp. 1550–1561.
  • C. Di, C.M. Crainiceanu, B. Caffo, and P. Naresh, Multilevel functional principal component analysis, Ann. Appl. Stat. 3 (2009), pp. 458–488.
  • F. Ding, S. He, D.E. Jones, and J.Z. Huang, Functional PCA with covariate-dependent mean and covariance structure, Technometrics 64 (2022), pp. 335–345. https://doi.org/10.1080/00401706.2021.2008502
  • N. Dobigeon and J.-Y. Tourneret, Bayesian orthogonal componnet analysis for sparse representation, IEEE. Trans. Signal. Process. 58 (2010), pp. 2675–2685.
  • A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin, Bayesian Data Analysis, 3rd ed., Chapman & Hall/CRC, Boca Raton, FL, 2013.
  • A. Gelman and H. Jennifer, Data Analysis Using Regression and Multilevel / Hierarchical Models, Cambridge University Press, United Kindom, 2007.
  • P.J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82 (1995), pp. 711–732.
  • A.K. Gupta and D.K. Nagar, Matrix Variate Distributions, Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2000.
  • P. Hall, H.-G. Müller, and F. Yao, Modeling sparse generalized longitudinal observations with latent Gaussian processes, J. R. Stat. Soc. B 70 (2008), pp. 703–723.
  • P.D. Hoff, Model averaging and dimension selection for the singular value decomposition, J. Am. Stat. Assoc. 102 (2007), pp. 674–685.
  • P.D. Hoff, A First Course in Bayesian Statistical Methods, Springer, New York, NY, 2009.
  • G.M. James, T.J. Hastie, and C.A. Sugar, Principal component models for sparse functional data, Biometrika 87 (2000), pp. 587–602.
  • F. Jan, I. Shan, and S. Ali, Short-term electricity prices forecasting using functional time series analysis, Energies 15 (2022), pp. 3423.
  • M. Jauch, P.D. Hoff, and D.B. Dunson, Monte Carlo simulation on the Stiefel manifold via polar expansion, J. Comput. Graph. Stat. 30 (2021), pp. 622–631.
  • I.T. Jolliffe, Principal Component Analysis, 2nd ed., Springer, New York, NY, 2002.
  • R. King, B. Morgan, O. Gimenez, and S. Brooks, Bayesian Analysis for Population Ecology, Chapman & Hall/CRC, Boca Raton, FL, 2010.
  • D.R. Kowal and D.C. Bourgeois, Bayesian function-on-scalars regression for high dimensional data, J. Comput. Graph. Stat. 29 (2020), pp. 629–638.
  • M. Kyung, J. Gill, M. Ghoshz, and G. Casella, Penalized regression, standard errors, and Bayesian lassos, Bayesian Anal. 5 (2010), pp. 369–412.
  • Y. Li, N. Wang, and R.J. Carroll, Generalized functional linear models with semiparametric single-index interactions, J. Am. Stat. Assoc. 105 (2010), pp. 621–633.
  • A. Linde, Variational Bayesian functional PCA, Comput. Stat. Data Anal. 53 (2008), pp. 517–533.
  • H.F. Lopes and M. West, Bayesian model assessment in factor analysis, Stat. Sin. 14 (2004), pp. 41–67.
  • P. McCullagh and J.A. Nelder, Generalized Linear Models, Chapman & Hall/CRC, Boca Raton, FL, 1989.
  • M.N. Nounou, B.R. Bakshi, P.K. Goel, and X. Shen, Bayesian principal component analysis, J. Chemom. 16 (2002), pp. 576–595.
  • C.L. Ogden and M.D. Carrol, Prevalence of obesity among children and adolescents: United States, Trends 1963-1965 through 2007-2008. Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, MD, 2010.
  • C.L. Ogden, M.D. Carroll, B.K. Kit, and K.M. Fegal, Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010, J. Am. Med. Assoc. 307 (2012), pp. 483–490.
  • J.O. Ramsay and B.W. Silverman, Functional Data Analysis, 2nd ed., Springer-Verlag, New York, NY, 2005.
  • S. Richardson and P.J. Green, On Bayesian analysis of mixtures with an unknown number of components (with discussion), J. R. Stat. Soc. B 59 (1997), pp. 731–792.
  • C.P. Robert and G. Casella, Introducing Monte Carlo Methods with R, Springer-Verlag, New York, NY, 2010.
  • D. Ruppert, M.P. Wand, and R.J. Carroll, Semiparametric Regression, Cambridge University Press, New York, NY, 2003.
  • I. Shah, H. Iftikhar, S. Ali, and D. Wang, Short-term electricity demand forecasting using components estimation technique, Energies 12 (2019), pp. 2532.
  • I. Shah and F. Lisi, Forecasting of electricity price through a functional prediction of sale and purchase curves, J. Forecast. 39 (2020), pp. 242–259.
  • J. Shamshoian, D. Şentürk, S. Jeste, and D. Telesca, Bayesian analysis of longitudinal and multidimensional functional data, Biostatistics 23 (2020), pp. 558–573. https://doi.org/10.1093/biostatistics/kxaa041
  • M.J. Sillanpaa and E. Arjas, Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data, Genetics 151 (1998), pp. 1605–1619.
  • V. Smidl and A. Quinn, On Bayesian principal compopnent analysis, Comput. Stat. Data Anal. 51 (2007), pp. 4101–4123.
  • D.A. Sorensen, S. Andersen, D. Gianola, and I. Korsgaard, Bayesian inference in threshold models using Gibbs sampling, Genet. Sel. Evol. 27 (1995), pp. 229–249.
  • P.L. Speckman and D. Sun, Fully Bayesian spline smoothing and intrinsic autoregressivep priors, Biometrika 90 (2003), pp. 289–302.
  • M. Stephens, Bayesian analysis of mixture models with an unknown number of components – an alternative to reversible jump methods, Ann. Stat. 28 (2000), pp. 40–74.
  • A.J. Suarez and S. Ghosal, Bayesian estimation of principal components for functional data, Bayesian Anal. 12 (2017), pp. 313–333.
  • D. Sun, R.K. Tsutakawa, and P.L. Speckman, Posterior distribution of hierarchical models using CAR(1) distributions, Biometrika 86 (1999), pp. 341–350.
  • J. Tang, Y. Li, and Y. Guan, Generalized quasi-likelihood ratio tests for semiparametric analysis of covariance models in longitudinal data, J. Am. Stat. Assoc. 111 (2016), pp. 736–747.
  • A. Van Der Linde, Variational Bayesian functional PCA, Comput. Stat. Data Anal. 53 (2008), pp. 517–533.
  • A. Van Der Linde, A Bayesian latent variable approach to functional principal components analysis with binary and count data, AStA Adv. Stat. Anal. 93 (2009), pp. 307–333.
  • S. Xu and W.R. Atchleyt, Mapping quantitative trait loci for complex binary diseases using line crosses, Genetics 143 (1996), pp. 1417–1424.
  • Y. Xu, Y. Li, and D. Nettleton, Nested hierarchical functional data modeling and inference for the analysis of functional plant phenotypes, J. Am. Stat. Assoc. 113 (2018), pp. 593–606.
  • F. Yao, H.-G. Müller, and J.-L. Wang, Functional data analysis for sparse longitudinal data, J. Am. Stat. Assoc. 100 (2005), pp. 577–590.
  • J. Ye, Y. Li, and Y. Guan, Joint modeling of longitudinal drug using pattern and time to first relapse in cocaine dependence treatment data, Ann. Appl. Stat. 9 (2015), pp. 1621–1642.
  • J. Ye, J. Xi, and R.L. Einsporn, Functional principal component analysis method in age-period-cohort analysis of body mass index data by gender and ethnicity, J. Appl. Stat. 45 (2018), pp. 901–917.
  • N. Yi and S. Banerjee, Herarchical generalized models for multiple quantitative trait locus mapping, Genetics 181 (2009), pp. 1101–1113.
  • Z. Zhang, K.L. Chan, J.T. Kwok, and D.-Y. Yeung, Bayesian inference on principal component analysis using reversible jump MCMC. in Proceedings of the 19th National Conference on Artificial Intelligence, AAAI'04, 2004, pp. 25–29.
  • L. Zhou, J. Huang, J.G. Martinez, A. Maity, V. Baladandayuthapani, and R.J. Carroll, Reduced rank mixed effects models for spatially corrected hierarchical functional data, J. Amer. Statist. Assoc. 105 (2010), pp. 390–400.
  • L. Zhou, J.Z. Huang, and R.J. Carroll, Joint modelling of paired sparse functional data using principal components, Biometrika 95 (2008), pp. 601–619.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.