3,798
Views
36
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical assessment 19: stacking fault energies of austenitic steels

, &
Pages 1-8 | Received 24 Oct 2015, Accepted 25 Oct 2015, Published online: 31 Mar 2016

References

  • O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer: ‘High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development – properties – application’, Int. J. Plasticity, 2000, 16, 1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • S. Vercammen, B. Blanpain, B. C. De Cooman and P. Wollants: ‘Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning’, Acta Mater., 2004, 52, 2005–2012. doi: 10.1016/j.actamat.2003.12.040
  • J. Talonen and H. Hänninen: ‘Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels’, Acta Mater., 2007, 55, 6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier: ‘High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships’, Curr. Opin. Solid State Mater. Sci., 2011, 15, 141–168. doi: 10.1016/j.cossms.2011.04.002
  • G. B. Olson and M. Cohen: ‘A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation’, Metall. Trans. A, 1976, 7, 1897–1904.
  • B. C. De Cooman, O. Kwon and K. G. Chin: ‘State-of-the-knowledge on TWIP steel’, Mater. Sci. Technol., 2012, 28, 513–527. doi: 10.1179/1743284711Y.0000000095
  • H. K. D. H. Bhadeshia: ‘Twinning-induced plasticity steels’, Scripta Mater, 2012, 66, 955. doi: 10.1016/j.scriptamat.2012.04.006
  • L. Remy and A. Pineau: ‘Twinning and strain-induced F.C.C. → H.C.P. transformation in the FeMnCrC system’, Mater. Sci. Eng., 1977, 28, 99–107. doi: 10.1016/0025-5416(77)90093-3
  • T. H. Lee, E. Shin, C. S. Oh, H. Y. Ha and S. J. Kim: ‘Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels’, Acta Mater., 2010, 58, 3173–3186. doi: 10.1016/j.actamat.2010.01.056
  • H. Kim, Y. Ha, K. H. Kwon, M. Kang, N. J. Kim and S. Lee: ‘Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C–(22–26)Mn steels’, Acta Mater., 2015, 87, 322–343. doi: 10.1016/j.actamat.2014.11.027
  • H. Kim, J. Park, J. E. Jung, S. S. Sohn and S. Lee: ‘Interpretation of cryogenic-temperature Charpy fracture initiation and propagation energies by microstructural evolution occurring during dynamic compressive test of austenitic Fe–(0.4,1.0)C–18Mn steels’, Mater. Sci. Eng. A, 2015, 641, 340–347. doi: 10.1016/j.msea.2015.05.095
  • S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton: ‘Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys’, Mater. Sci. Eng. A, 2004, 387–389, 158–162. doi: 10.1016/j.msea.2004.01.059
  • M. Ghasri-Khouzani and J. R. McDermid: ‘Effect of carbon content on the mechanical properties and microstructural evolution of Fe–22Mn–C steels’, Mater. Sci. Eng. A, 2015, 621, 118–127. doi: 10.1016/j.msea.2014.10.042
  • A. Vinogradov, A. Lazarev, M. Linderov, A. Weidner and H. Biermann: ‘Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy: influence of austenite stability on deformation mechanisms’, Acta Mater., 2013, 61, 2434–2449. doi: 10.1016/j.actamat.2013.01.016
  • D. Jeong, T. Park, J. Lee and S. Kim: ‘Ambient and cryogenic S–N fatigue behavior of Fe15Mn steel and its weld’, Met. Mater. Int., 2015, 21, 453–460. doi: 10.1007/s12540-015-4397-7
  • S. Kim, J. Kwon, Y. Kim, W. Jang, S. Lee and J. Choi: ‘Factors influencing fatigue crack propagation behavior of austenitic steels’, Met. Mater. Int., 2013, 19, 683–690. doi: 10.1007/s12540-013-4007-5
  • H. Kim, J. Park, Y. Ha, W. Kim, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim and S. Lee: ‘Dynamic tension–compression asymmetry of martensitic transformation in austenitic Fe–(0.4, 1.0)C–18Mn steels for cryogenic applications’, Acta Mater., 2015, 96, 37–46. doi: 10.1016/j.actamat.2015.06.021
  • M. X. Huang, Z. Y. Liang and Z. C. Luo: ‘Critical assessment 15: science of deformation and failure mechanisms in twinning induced plasticity steels’, Mater. Sci. Technol., 2015, 31, 1265–1270. doi: 10.1179/1743284715Y.0000000095
  • B. Ma, C. S. Li, Y. L. Song and J. J. Zheng: ‘Effect of manganese content on hot deformation behaviour of Fe–(20/27)Mn–4Al–0.3C non-magnetic steels’, Mater. Sci. Technol., http://dx.doi.org/10.1179/1743284715Y.0000000099.
  • S. X. Ding, C. P. Chang, J. F. Tu and K. C. Yang: ‘Microstructure and tensile behaviour of 15–24 wt-%Mn TWIP steels’, Mater. Sci. Technol., 2013, 29, 1048–1054. doi: 10.1179/1743284713Y.0000000251
  • B. Gumus, B. Bal, G. Gerstein, D. Canadinc and H. J. Maier: ‘Twinning activity in high-manganese austenitic steels under high velocity loading’, Mater. Sci. Technol., http://dx.doi.org/10.1179/1743284715Y.0000000111.
  • T. S. Byun: ‘On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels’, Acta Mater., 2003, 51, 3063–3071. doi: 10.1016/S1359-6454(03)00117-4
  • K. T. Park, K. G. Jin, S. H. Han, S. W. Hwang, K. Choi and C. S. Lee: ‘Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition’, Mater. Sci. Eng. A, 2010, 527, 3651–3661. doi: 10.1016/j.msea.2010.02.058
  • K. T. Park, G. Kim, S. K. Kim, S. W. Lee, S. W. Hwang and C. S. Lee: ‘On the transitions of deformation modes of fully austenitic steels at room temperature’, Met. Mater. Int., 2010, 16, 1–6. doi: 10.1007/s12540-010-0001-3
  • S. Lee, Y. Estrin and B. C. De Cooman: ‘Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe–12 pct Mn–0.6 pct C TWIP Steel’, Metall. Mater. Trans. A, 2014, 45, 717–730. doi: 10.1007/s11661-013-2028-9
  • Y. F. Shen, Y. D. Wang, X. P. Liu, X. Sun, R. Lin Peng, S. Y. Zhang, L. Zuo and P. K. Liaw: ‘Deformation mechanisms of a 20Mn TWIP steel investigated by in situ neutron diffraction and TEM’, Acta Mater., 2013, 61, 6093–6106. doi: 10.1016/j.actamat.2013.06.051
  • K. Jeong, J.-E. Jin, Y.-S. Jung, S. Kang and Y.-K. Lee: ‘The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel’, Acta Mater., 2013, 61, 3399–3410. doi: 10.1016/j.actamat.2013.02.031
  • J. E. Jin and Y.-K. Lee: ‘Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel’, Acta Mater., 2012, 60, 1680–1688. doi: 10.1016/j.actamat.2011.12.004
  • J. S. Jeong, W. Woo, K. H. Oh, S. K. Kwon and Y. M. Koo: ‘In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels’, Acta Mater., 2012, 60, 2290–2299. doi: 10.1016/j.actamat.2011.12.043
  • M. A. Meyers, O. Vöhringer and V. A. Lubarda: ‘The onset of twinning in metals: a constitutive description’, Acta Mater., 2001, 49, 4025–4039. doi: 10.1016/S1359-6454(01)00300-7
  • Y. Zhang, N. R. Tao and K. Lu: ‘Effect of stacking-fault energy on deformation twin thickness in Cu–Al alloys’, Scripta Mater., 2009, 60, 211–213. doi: 10.1016/j.scriptamat.2008.10.005
  • Y.-S. Jung, S. Kang, K. Jeong, J.-G. Jung and Y.-K. Lee: ‘The effects of N on the microstructures and tensile properties of Fe–15Mn–0.6C–2Cr–xN twinning-induced plasticity steels’, Acta Mater., 2013, 61, 6541–6548. doi: 10.1016/j.actamat.2013.07.036
  • H. Barman, A. S. Hamada, T. Sahu, B. Mahato, J. Talonen, S. K. Shee, P. Sahu, D. A. Porter and L. P. Karjalainen: ‘A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr–Mn austenitic steel’, Metall. Mater. Trans. A, 2014, 45, 1937–1952. doi: 10.1007/s11661-013-2175-z
  • B. Mahato, S. K. Shee, T. Sahu, S. Ghosh Chowdhury, P. Sahu, D. A. Porter and L. P. Karjalainen: ‘An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel’, Acta Mater., 2015, 86, 69–79. doi: 10.1016/j.actamat.2014.12.015
  • D. Rafaja, C. Krbetschek, C. Ullrich and S. Martin: ‘Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending’, J. Appl. Crystallogr., 2014, 47, 936–947. doi: 10.1107/S1600576714007109
  • R. P. Reed and R. E. Schramm: ‘Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain’, J. Appl. Phys., 1974, 45, 4705–4711. doi: 10.1063/1.1663122
  • P. Sahu, S. K. Shee, A. S. Hamada, L. Rovatti, T. Sahu, B. Mahato, S. Ghosh Chowdhury, D. A. Porter and L. P. Karjalainen: ‘Low strain rate deformation behavior of a Cr–Mn austenitic steel at −80°C’, Acta Mater, 2012, 60, 6907–6919. doi: 10.1016/j.actamat.2012.07.055
  • R. E. Schramm and R. P. Reed: ‘Stacking fault energies of seven commercial austenitic stainless steels’, Metall. Trans. A, 1975, 6, 1345–1351. doi: 10.1007/BF02641927
  • R. E. Schramm and R. P. Reed: ‘Stacking fault energies of fcc Fe–Ni alloys by X-ray diffraction line profile analysis’, Metall. Trans. A, 1976, 7, 359–363. doi: 10.1007/BF02642831
  • X. Tian and Y. Zhang: ‘Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part I. X-ray diffraction line profile analysis’, Mater. Sci. Eng. A, 2009, 516, 73–77. doi: 10.1016/j.msea.2009.02.031
  • S. Sato, E. P. Kwon, M. Imafuku, K. Wagatsuma and S. Suzuki: ‘Microstructural characterization of high-manganese austenitic steels with different stacking fault energies’, Mater. Charact., 2011, 62, 781–788. doi: 10.1016/j.matchar.2011.05.011
  • T. Das, R. Saha, S. Bera, K. Dahmen, M. Ghosh, A. Haldar, W. Bleck and S. G. Chowdhury: ‘Effect of high tensile strain rate on the evolution of microstructure in Fe–Mn–C–Al twinning-induced plasticity (TWIP) steel’, Metall. Mater. Trans. A, 2014, 46, 6–11. doi: 10.1007/s11661-014-2654-x
  • S.-J. Lee, Y.-S. Jung, S.-I. Baik, Y.-W. Kim, M. Kang, W. Woo and Y.-K. Lee: ‘The effect of nitrogen on the stacking fault energy in Fe–15Mn–2Cr–0.6C–xN twinning-induced plasticity steels’, Scripta Mater., 2014, 92, 23–26. doi: 10.1016/j.scriptamat.2014.08.004
  • T.-H. Lee, H.-Y. Ha, J.-Y. Kang, B. Hwang, W. Woo and E. Shin: ‘In situ and ex situ neutron diffraction study on deformation behavior of high-nitrogen, Ni-free duplex stainless steel’, Scripta Mater., 2012, 67, 141–144. doi: 10.1016/j.scriptamat.2012.03.043
  • T. H. Lee, H. Y. Ha, B. Hwang, S. J. Kim and E. Shin: ‘Effect of carbon fraction on stacking fault energy of austenitic stainless steels’, Metall. Mater. Trans. A, 2012, 43, 4455–4459. doi: 10.1007/s11661-012-1423-y
  • M. Kang, W. Woo, Y.-K. Lee and B.-S. Seong: ‘Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al–0.6C twinning-induced plasticity steels’, Mater. Lett., 2012, 76, 93–95. doi: 10.1016/j.matlet.2012.02.075
  • J. S. Jeong, Y. M. Koo, I. K. Jeong, S. K. Kim and S. K. Kwon: ‘Micro-structural study of high-Mn TWIP steels using diffraction profile analysis’, Mater. Sci. Eng. A, 2011, 530, 128–134. doi: 10.1016/j.msea.2011.09.060
  • R. E. Stoltz and J. B. Sande: ‘The effect of nitrogen on stacking fault energy of Fe–Ni–Cr–Mn steels’, Metall. Trans. A, 1980, 11, 1033–1037. doi: 10.1007/BF02654717
  • P. Y. Volosevich, V. N. Grindnev and Y. N. Petrov: ‘Influence of manganese and the stacking fault energy of iron-manganese alloys’, Phys. Met. Metallogr., 1976, 42, 126–130.
  • P. Y. Volosevich, V. N. Gridnev and Y. N. Petrov: ‘Influence of carbon on the stacking fault energy of austenite in manganese steels’, Phys. Met. Metallog., 1975, 40, 90–94.
  • T. Yonezawa, K. Suzuki, S. Ooki and A. Hashimoto: ‘The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe–Cr–Ni austenitic stainless steel’, Metall. Mater. Trans. A, 2013, 44, 5884–5896. doi: 10.1007/s11661-013-1943-0
  • J. Y. Yun, G. S. Shin, M. C. Park, H. S. Lee, W. S. Kang and S. J. Kim: ‘Effect of strain-induced ε and α′-martensitic transformation on cavitation erosion resistance in austenitic Fe–Cr–C–MnFe–Cr–C–Mnti alloys’, Wear, 2015, 338–339, 379–384. doi: 10.1016/j.wear.2015.04.009
  • H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers and P. J. Jacques: ‘On the mechanism of twin formation in Fe–Mn–C TWIP steels’, Acta Mater., 2010, 58, 2464–2476. doi: 10.1016/j.actamat.2009.12.032
  • M. C. Park, G. S. Shin, J. Y. Yun, J. H. Heo, D. I. Kim and S. J. Kim: ‘Damage mechanism of cavitation erosion in austenite→martensite phase transformable Fe–Cr–C–Mn/Ni alloys’, Wear, 2014, 310, 27–32. doi: 10.1016/j.wear.2013.12.015
  • D. T. Pierce, J. Bentley, J. A. Jiménez and J. E. Wittig: ‘Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels’, Scripta Mater., 2012, 66, 753–756. doi: 10.1016/j.scriptamat.2012.01.050
  • D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J. E. Wittig: ‘The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al–Si) steels investigated by experiment and theory’, Acta Mater., 2014, 68, 238–253. doi: 10.1016/j.actamat.2014.01.001
  • V. Gavriljuk, Y. Petrov and B. Shanina: ‘Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels’, Scripta Mater., 2006, 55, 537–540. doi: 10.1016/j.scriptamat.2006.05.025
  • M. Park, K. Kim, J. Yun, G. Shin and S. Kim: ‘Strain-induced ε/α′ martensitic transformation behavior and solid particle erosion resistance of austenitic Fe–Cr–C–Mn/Ni alloys’, Tribol. Lett., 2014, 54, 51–58. doi: 10.1007/s11249-014-0306-3
  • L. Mosecker, D. T. Pierce, A. Schwedt, M. Beighmohamadi, J. Mayer, W. Bleck and J. E. Wittig: ‘Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel’, Mater. Sci. Eng. A, 2015, 642, 71–83. doi: 10.1016/j.msea.2015.06.047
  • J. Kim, S. J. Lee and B. C. De Cooman: ‘Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity’, Scripta Mater., 2011, 65, 363–366. doi: 10.1016/j.scriptamat.2011.05.014
  • J. Kim and B. C. De Cooman: ‘On the stacking fault energy of Fe–18 pct Mn–0.6 pct C–1.5 pct Al twinning-induced plasticity steel’, Metall. Mater. Trans. A, 2011, 42, 932–936. doi: 10.1007/s11661-011-0610-6
  • T. Hickel, S. Sandlöbes, R. K. W. Marceau, A. Dick, I. Bleskov, J. Neugebauer and D. Raabe: ‘Impact of nanodiffusion on the stacking fault energy in high-strength steels’, Acta Mater., 2014, 75, 147–155. doi: 10.1016/j.actamat.2014.04.062
  • L. Remy: ‘Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel’, Acta Metall., 1977, 25, 173–179. doi: 10.1016/0001-6160(77)90120-1
  • C. Rhodes and A. Thompson: ‘The composition dependence of stacking fault energy in austenitic stainless steels’, Metall. Trans. A, 1977, 8, 1901–1906. doi: 10.1007/BF02646563
  • P. H. Adler, G. B. Olson and W. S. Owen: ‘Strain hardening of Hadfield manganese steel’, Metall. Trans. A, 1986, 17, 1725–1737. doi: 10.1007/BF02817271
  • X. Tian, H. Li and Y. Zhang: ‘Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys’, J. Mater. Sci., 2008, 43, 6214–6222. doi: 10.1007/s10853-008-2919-0
  • X. Tian and Y. Zhang: ‘Effect of Si content on the stacking fault energy in γ-Fe–Mn–Si–C alloys: Part II. Thermodynamic estimation’, Mater. Sci. Eng. A, 2009, 516, 78–83. doi: 10.1016/j.msea.2009.02.032
  • L. Mosecker and A. Saeed-Akbari: ‘Nitrogen in chromium–manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics’, Sci. Technol. Adv. Mater., 2013, 14. doi: 10.1088/1468-6996/14/3/033001
  • A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck: ‘Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese Steels’, Metall. Mater. Trans. A, 2009, 40, 3076–3090. doi: 10.1007/s11661-009-0050-8
  • A. Saeed-Akbari, L. Mosecker, A. Schwedt and W. Bleck: ‘Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior’, Metall. Mater. Trans. A, 2012, 43, 1688–1704. doi: 10.1007/s11661-011-0993-4
  • J. D. Yoo and K. T. Park: ‘Microband-induced plasticity in a high Mn–Al–C light steel’, Mater. Sci. Eng. A, 2008, 496, 417–424. doi: 10.1016/j.msea.2008.05.042
  • J. Nakano and P. J. Jacques: ‘Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems’, Calphad, 2010, 34, 167–175. doi: 10.1016/j.calphad.2010.02.001
  • S.-J. Lee, J. Han, C.-Y. Lee, I.-J. Park and Y.-K. Lee: ‘Elastic strain energy induced by epsilon martensitic transformation and its contribution to the stacking-fault energy of austenite in Fe–15Mn–xC alloys’, J. Alloys Compd., 2014, 617, 588–596. doi: 10.1016/j.jallcom.2014.08.054
  • S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen and H. Hänninen: ‘Thermodynamic modeling of the stacking fault energy of austenitic steels’, Acta Mater., 2011, 59, 1068–1076. doi: 10.1016/j.actamat.2010.10.037
  • Y. -K. Lee and C. S. Choi: ‘Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system’, Metall. Mater. Trans. A, 2000, 31, 355–360. doi: 10.1007/s11661-000-0271-3
  • M. Koyama, T. Sawaguchi, T. Lee, C. S. Lee and K. Tsuzaki: ‘Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels’, Mater. Sci. Eng. A, 2011, 528, 7310–7316. doi: 10.1016/j.msea.2011.06.011
  • A. Dumay, J. P. Chateau, S. Allain, S. Migot and O. Bouaziz: ‘Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel’, Mater. Sci. Eng. A, 2008, 483–484, 184–187. doi: 10.1016/j.msea.2006.12.170
  • W. S. Yang and C. M. Wan: ‘The influence of aluminium content to the stacking fault energy in Fe–Mn–Al–C alloy system’, J. Mater. Sci., 1990, 25, 1821–1823. doi: 10.1007/BF01045392
  • R. Xiong, H. Peng, H. Si, W. Zhang and Y. Wen: ‘Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels’, Mater. Sci. Eng. A, 2014, 598, 376–386. doi: 10.1016/j.msea.2014.01.046
  • S. M. Cotes, A. Fernández Guillermet and M. Sade: ‘Fcc/Hcp martensitic transformation in the Fe–Mn system: Part II. Driving force and thermodynamics of the nucleation process’, Metall. Mater. Trans. A, 2004, 35, 83–91. doi: 10.1007/s11661-004-0111-y
  • K. Ishida: ‘Direct estimation of stacking fault energy by thermodynamic analysis’, Phys. Status Solidi A, 1976, 36, 717–728. doi: 10.1002/pssa.2210360233
  • A. P. Miodownik: ‘The calculation of stacking fault energies in FeNiCr alloys’, Calphad, 1978, 2, 207–226. doi: 10.1016/0364-5916(78)90010-X
  • N. I. Medvedeva, M. S. Park, D. C. Van Aken and J. E. Medvedeva: ‘First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe’, J. Alloys Compd., 2014, 582, 475–482. doi: 10.1016/j.jallcom.2013.08.089
  • A. Abbasi, A. Dick, T. Hickel and J. Neugebauer: ‘First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys’, Acta Mater., 2011, 59, 3041–3048. doi: 10.1016/j.actamat.2011.01.044
  • S. Kibey, J. B. Liu, M. J. Curtis, D. D. Johnson and H. Sehitoglu: ‘Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels’, Acta Mater., 2006, 54, 2991–3001. doi: 10.1016/j.actamat.2006.02.048
  • L. Vitos, J. O. Nilsson and B. Johansson: ‘Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory’, Acta Mater, 2006, 54, 3821–3826. doi: 10.1016/j.actamat.2006.04.013
  • M. Jo, Y. M. Koo and S. K. Kwon: ‘Determination of the deformation mechanism of Fe–Mn alloys’, Met. Mater. Int., 2015, 21, 227–231. doi: 10.1007/s12540-015-4320-2
  • G. E. Dieter: ‘Mechanical metallurgy’, 2nd edn, 139–141; 2001, London, McGraw-Hill.
  • J. W. Brooks, M. H. Loretto and R. E. Smallman: ‘In situ observations of the formation of martensite in stainless steel’, Acta Metall., 1979, 27, 1829–1838. doi: 10.1016/0001-6160(79)90073-7
  • J. W. Brooks, M. H. Loretto and R. E. Smallman: ‘Direct observations of martensite nuclei in stainless steel’, Acta Metall., 1979, 27, 1839–1847. doi: 10.1016/0001-6160(79)90074-9
  • J. P. Hirth: ‘Thermodynamics of stacking faults’, Metall. Trans., 1970, 1, 2026–2026. doi: 10.1007/BF02642816
  • S. Takaki, H. Nakatsu and Y. Tokunaga: ‘Effects of austenite grain size on ε martensitic transformation in Fe–15mass%Mn alloy’, Mater. Trans. JIM, 1993, 34, 489–495. doi: 10.2320/matertrans1989.34.489
  • J. D. Eshelby: ‘The determination of the elastic field of an ellipsoidal inclusion, and related problems’, Proc. R. Soc. A: Math., Phys. Eng. Sci., 1957, 241, 376–396. doi: 10.1098/rspa.1957.0133
  • S.-J. Lee, Y.-K. Lee and A. Soon: ‘The austenite/ϵ martensite interface: a first-principles investigation of the fcc Fe(111)/hcp Fe(0001) system’, Appl. Surf. Sci., 2012, 258, 9977–9981. doi: 10.1016/j.apsusc.2012.06.059
  • M.-S. Kim and Y.-B. Kang: ‘Development of thermodynamic database for high Mn–high Al steels: phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling’, Calphad, 2015, 51, 89–103. doi: 10.1016/j.calphad.2015.08.004
  • A. T. Phan, M. K. Paek and Y. B. Kang: ‘Phase equilibria and thermodynamics of the Fe–Al–C system: critical evaluation, experiment and thermodynamic optimization’, Acta Mater., 2014, 79, 1–15. doi: 10.1016/j.actamat.2014.07.006
  • M.-K. Paek, J.-J. Pak and Y.-B. Kang: ‘Phase equilibria and thermodynamics of Mn–C, Mn–Si, Si–C binary systems and Mn–Si–C ternary system by critical evaluation, combined with experiment and thermodynamic modeling’, Calphad, 2014, 46, 92–102. doi: 10.1016/j.calphad.2014.02.007
  • I. Ohnuma, S. Abe, S. Shimenouchi, T. Omori, R. Kainuma and K. Ishida: ‘Experimental and thermodynamic studies of the Fe–Si binary system’, ISIJ Int., 2012, 52, 540–548. doi: 10.2355/isijinternational.52.540
  • D. Djurovic, B. Hallstedt, J. Von Appen and R. Dronskowski: ‘Thermodynamic assessment of the Mn–C system’, Calphad, 2010, 34, 279–285. doi: 10.1016/j.calphad.2010.05.002
  • D. Djurovic, B. Hallstedt, J. Von Appen and R. Dronskowski: ‘Thermodynamic assessment of the Fe–Mn–C system’, Calphad, 2011, 35, 479–491. doi: 10.1016/j.calphad.2011.08.002
  • A. V. Khvan and B. Hallstedt: ‘Thermodynamic description of the Fe–Mn–Nb–C system’, Calphad, 2012, 39, 62–69. doi: 10.1016/j.calphad.2012.09.001
  • A. V. Khvan and B. Hallstedt: ‘Thermodynamic assessment of FeMnNbN and NbCN systems’, Calphad, 2013, 40, 10–15. doi: 10.1016/j.calphad.2012.11.001
  • A. V. Khvan, B. Hallstedt and C. Broeckmann: ‘A thermodynamic evaluation of the Fe–Cr–C system’, Calphad, 2014, 46, 24–33. doi: 10.1016/j.calphad.2014.01.002
  • A. V. Khvan, B. Hallstedt and K. Chang: ‘Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems’, Calphad, 2012, 39, 54–61. doi: 10.1016/j.calphad.2012.09.002
  • H. S. Yang, J. H. Jang, H. K. D. H. Bhadeshia and D. W. Suh: ‘Critical assessment: martensite-start temperature for the transformation’, Calphad, 2012, 36, 16–22. doi: 10.1016/j.calphad.2011.10.008
  • J.-E. Jin, M. Jung, C.-Y. Lee, J. Jeong and Y.-K. Lee: ‘Néel temperature of high Mn austenitic steels’, Met. Mater. Int., 2012, 18, 419–423. doi: 10.1007/s12540-012-3006-2
  • L. A. A. Warnes and H. W. King: ‘The low temperature magnetic properties of austenitic Fe–Cr–Ni alloys’, Cryogenics, 1976, 16, 659–667. doi: 10.1016/0011-2275(76)90038-2
  • J. Lu, R. P. Walsh and K. Han: ‘Low temperature physical properties of a high Mn austenitic steel JK2LB’, Cryogenics, 2009, 49, 133–137. doi: 10.1016/j.cryogenics.2008.11.001
  • Y. S. Zhang, X. Lu, X. Tian and Z. Qin: ‘Compositional dependence of the Néel transition, structural stability, magnetic properties and electrical resistivity in Fe–Mn–Al–Cr–Si alloys’, Mater. Sci. Eng. A, 2002, 334, 19–27. doi: 10.1016/S0921-5093(01)01781-6
  • R. D. K. Misra, P. K. C. Venkatsurya, M. C. Somani and L. P. Karjalainen: ‘Nanoscale deformation behavior of phase-reversion induced austenitic stainless steels: the interplay between grain size from nano-grain regime to coarse-grain regime’, Metall. Mater. Trans. A, 2012, 43, 5286–5297. doi: 10.1007/s11661-012-1360-9
  • R. D. K. Misra, Z. Zhang, Z. Jia, P. K. C. Venkatsurya, M. C. Somani and L. P. Karjalainen: ‘Nanomechanical insights into the deformation behavior of austenitic alloys with different stacking fault energies and austenitic stability’, Mater. Sci. Eng. A, 2011, 528, 6958–6963. doi: 10.1016/j.msea.2011.05.068
  • R. D. K. Misra, V. S. A. Challa, P. K. C. Venkatsurya, Y. F. Shen, M. C. Somani and L. P. Karjalainen: ‘Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy’, Acta Mater., 2015, 84, 339–348. doi: 10.1016/j.actamat.2014.10.038
  • D. Music, T. Takahashi, L. Vitos, C. Asker, I. A. Abrikosov and J. M. Schneider: ‘Elastic properties of Fe–Mn random alloys studied by ab initio calculations’, Appl. Phys. Lett., 2007, 91. doi: 10.1063/1.2807677
  • T. Gebhardt, D. Music, D. Kossmann, M. Ekholm, I. A. Abrikosov, L. Vitos and J. M. Schneider: ‘Elastic properties of fcc Fe–Mn–X (X = Al, Si) alloys studied by theory and experiment’, Acta Mater., 2011, 59, 3145–3155. doi: 10.1016/j.actamat.2011.01.054
  • K. Benyelloul and H. Aourag: ‘Elastic constants of austenitic stainless steel: investigation by the first-principles calculations and the artificial neural network approach’, Comp. Mater. Sci., 2013, 67, 353–358. doi: 10.1016/j.commatsci.2012.09.005
  • H. L. Zhang, N. Al-Zoubi, B. Johansson and L. Vitos: ‘Alloying effects on the elastic parameters of ferromagnetic and paramagnetic Fe from first-principles theory’, J. Appl. Phys., 2011, 110, 073707-1–073707-12.
  • B. E. Warren: ‘X-ray diffraction’, 290–305; 1990, New York, Addison-Wesley.
  • A. W. Ruff: ‘Measurement of stacking fault energy from dislocation interactions’, Metall. Trans., 1970, 1, 2391–2413.
  • A. W. Ruff Jr and L. K. Ives: ‘Dislocation node determinations of the stacking fault energy in silver–tin alloys’, Acta Metall., 1967, 15, 189–198. doi: 10.1016/0001-6160(67)90191-5
  • A. W. Ruff Jr and L. K. Ives: ‘Stacking fault energy determinations in hcp silver–tin alloys’, Acta Metall., 1969, 17, 1045–1055. doi: 10.1016/0001-6160(69)90050-9
  • C. C. Bampton, I. P. Jones and M. H. Loretto: ‘Stacking fault energy measurements in some austenitic stainless steels’, Acta Metall., 1978, 26, 39–51. doi: 10.1016/0001-6160(78)90200-6
  • L. Rémy, A. Pineau and B. Thomas: ‘Temperature dependence of stacking fault energy in close-packed metals and alloys’, Mater. Sci. Eng., 1978, 36, 47–63. doi: 10.1016/0025-5416(78)90194-5
  • P. C. J. Gallagher: ‘The influence of alloying, temperature, and related effects on the stacking fault energy’, Metall. Trans., 1970, 1, 2429–2461.
  • X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu and M. Wang: ‘Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition’, Mater. Design, 2013, 45, 518–523. doi: 10.1016/j.matdes.2012.09.014
  • P. Lan, L. Song, C. Du and J. Zhang: ‘Analysis of solidification microstructure and hot ductility of Fe–22Mn–0.7C TWIP steel’, Mater. Sci. Technol., 2014, 30, 1297–1304. doi: 10.1179/1743284714Y.0000000560
  • D. R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed–Akbari, T. Hickel, F. Roters and D. Raabe: ‘Revealing the strain-hardening behavior of twinning-induced plasticity steels: theory, simulations, experiments’, Acta Mater., 2013, 61, 494–510. doi: 10.1016/j.actamat.2012.09.064
  • H. Idrissi, K. Renard, D. Schryvers and P. J. Jacques: ‘On the relationship between the twin internal structure and the work-hardening rate of TWIP steels’, Scripta Mater., 2010, 63, 961–964. doi: 10.1016/j.scriptamat.2010.07.016
  • H. K. Yang, Z. J. Zhang and Z. F. Zhang: ‘Comparison of work hardening and deformation twinning evolution in Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steels’, Scripta Mater., 2013, 68, 992–995. doi: 10.1016/j.scriptamat.2013.02.060
  • S. Mahajan and G. Y. Chin: ‘Formation of deformation twins in f.c.c. crystals’, Acta Metall., 1973, 21, 1353–1363. doi: 10.1016/0001-6160(73)90085-0
  • J. A. Venables: ‘The nucleation and propagation of deformation twins’, J. Phys. Chem. Solids, 1964, 25, 693–700. doi: 10.1016/0022-3697(64)90178-7
  • I. A. Yakubtsov, A. Ariapour and D. D. Perovic: ‘Effect of nitrogen on stacking fault energy of f.c.c. iron-based alloys’, Acta Mater., 1999, 47, 1271–1279. doi: 10.1016/S1359-6454(98)00419-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.