1,973
Views
35
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical Assessment 21: oxygen-assisted fatigue crack propagation in turbine disc superalloys

&
Pages 401-406 | Received 22 Jan 2016, Accepted 24 Jan 2016, Published online: 21 Apr 2016

References

  • R. C. Reed: ‘The Superalloys: fundamentals and applications’; 2006, Cambridge, Cambridge University Press.
  • J. Y. Guedou, J. C. Lautridou, and Y. Honnorat: ‘N18, Powder metallurgy superalloy for disks: development and applications’, J. Mater. Eng. Perform., 1993, 2, (4), 551–556. doi: 10.1007/BF02661740
  • J. Y. Guédou, I. Augustins-Lecallier, L. Nazé, P. Caron, D. Locq: ‘Development of a new fatigue and creep resistant PM Nickel-base superalloy for disk applications’, 21–30; 2008, TMS Superalloy 2008. Warrendale, PA: The Minerals, Metals & Materials Society.
  • Y. Gu, H. Harada, C. Cui, D. Ping, A. Sato, and J. Fujioka: ‘New Ni–Co-base disk superalloys with higher strength and creep resistance’, Scr. Mater., 2006, 55, (9), 815–818. doi: 10.1016/j.scriptamat.2006.07.008
  • S. Everitt, M. J. Starink, H. T. Pang, I. M. Wilcock, M. B. Henderson, and P. A. S. Reed: ‘A comparison of high temperature fatigue crack propagation in various subsolvus heat treated turbine disc alloys’, Mater. Sci. Technol., 2007, 23, (12), 1419–1423. doi: 10.1179/174328407X213189
  • A. Pineau and S. D. Antolovich: ‘High temperature fatigue of nickel-base superalloys – A review with special emphasis on deformation modes and oxidation’, Eng. Fail. Anal., 2009, 16, (8), 2668–2697. doi: 10.1016/j.engfailanal.2009.01.010
  • T. P. Gabb, P. T. Kantzos, J. Telesman, J. Gayda, C. K. Sudbrack, and B. Palsa: ‘Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk’, Int. J. Fatigue, 2011, 33, (3), 414–426. doi: 10.1016/j.ijfatigue.2010.09.022
  • J. H. Chen, P. M. Rogers, and J. A. Little: ‘Oxidation behavior of several chromia-forming commercial nickel-base superalloys’, Oxid Met., 1997, 47, (5–6), 381–410. doi: 10.1007/BF02134783
  • S. Everitt, R. Jiang, N. Gao, M. J. Starink, J. W. Brooks, and P. A. S. Reed: ‘Comparison of fatigue crack propagation behaviour in two gas turbine disc alloys under creep–fatigue conditions: evaluating microstructure, environment and temperature effects’, Mater. Sci. Technol., 2013, 29, (7), 781–787. doi: 10.1179/1743284713Y.0000000229
  • S. L. Semiatin, K. E. McClary, A. D. Rollett, C. G. Roberts, E. J. Payton, F. Zhang, and T. P. Gabb: ‘Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy’, Metall. Mat. Trans. A, 2012, 43, (5), 1649–1661. doi: 10.1007/s11661-011-1035-y
  • J. Gayda, T. P. Gabb, and P. T. Kantzos: ‘The effect of dual microstructure heat treatment on an advanced Nickel-based disk alloy’, 323–329; 2004, TMS Superalloy 2004. Warrendale, PA: The Minerals, Metals & Materials Society.
  • M. P. Jackson and R. C. Reed: ‘Heat treatment of UDIMET 720Li: the effect of microstructure on properties’, Mater. Sci. Eng. A, 1999, 259, (1), 85–97. doi: 10.1016/S0921-5093(98)00867-3
  • N. Bozzolo, N. Souaï, and R. E. Logé: ‘Evolution of microstructure and twin density during thermomechanical processing in a γ–γ’ nickel-based superalloy’, Acta Mater., 2012, 60, (13–14), 5056–5066. doi: 10.1016/j.actamat.2012.06.028
  • T. Osada, Y. Gu, N. Nagashima, Y. Yuan, T. Yokokawa, and H. Harada: ‘Optimum microstructure combination for maximizing tensile strength in a polycrystalline superalloy with a two-phase structure’, Acta Mater., 2013, 61, (5), 1820–1829. doi: 10.1016/j.actamat.2012.12.004
  • H. Ghonem, T. Nicholas, and A. Pineau: ‘Elevated temperature fatigue crack growth in alloy 718? Part II: effects of environmental and material variables’, Fatigue Fract. Eng. Mater. Struct., 1993, 16, (6), 577–590. doi: 10.1111/j.1460-2695.1993.tb00103.x
  • T. P. Gabb, J. Gayda, and J. Telesman: ‘Thermal and mechanical property characterization of the advanced disk alloy LSHR’, NASA/TM-2005-213645, 2005.
  • R. Molins, G. Hochstetter, J. C. Chassaigne, and E. Andrieu: ‘Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature’, Acta Mater., 1997, 45, (2), 663–674. doi: 10.1016/S1359-6454(96)00192-9
  • E. Andrieu, R. Molins, H. Ghonem, and A. Pineau: ‘Intergranular crack tip oxidation mechanism in a nickel-based superalloy’, Mater. Sci. Eng. A, 1992, 154, (1), 21–28. doi: 10.1016/0921-5093(92)90358-8
  • K. Maciejewski, J. Dahal, Y. Sun, and H. Ghonem: ‘Creep–environment interactions in dwell-fatigue crack growth of nickel based superalloys’, Metall. Mater. Trans. A, 2014, 45, (5), 2508–2521. doi: 10.1007/s11661-014-2199-z
  • H. S. Kitaguchi, H. Y. Li, H. E. Evans, R. G. Ding, I. P. Jones, G. Baxter, and P. Bowen: ‘Oxidation ahead of a crack tip in an advanced Ni-based superalloy’, Acta Mater., 2013, 61, (6), 1968–1981. doi: 10.1016/j.actamat.2012.12.017
  • R. Jiang, S. Everitt, N. Gao, K. Soady, J. W. Brooks, and P. A. S. Reed: ‘Influence of oxidation on fatigue crack initiation and propagation in turbine disc alloy N18’, Int. J. Fatigue, 2015, 75, 89–99. doi: 10.1016/j.ijfatigue.2015.02.007
  • R. Jiang, S. Everitt, M. Lewandowski, N. Gao, and P. A. S. Reed: ‘Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes’, Int. J. Fatigue, 2014, 62, 217–227. doi: 10.1016/j.ijfatigue.2013.07.014
  • D. G. Leo Prakash, M. J. Walsh, D. Maclachlan, and A. M. Korsunsky: ‘Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation’, Int. J. Fatigue, 2009, 31, (11–12), 1966–1977. doi: 10.1016/j.ijfatigue.2009.01.023
  • B. A. Lerch, N. Jayaraman, and S. D. Antolovich: ‘A study of fatigue damage mechanisms in Waspaloy from 25 to 800°C’, Mater. Sci. Eng., 1984, 66, (2), 151–166. doi: 10.1016/0025-5416(84)90177-0
  • J. Gayda and R. V. Miner: ‘Fatigue crack initiation and propagation in several nickel-base superalloys at 650°C’, Int. J. Fatigue, 1983, 5, (3), 135–143. doi: 10.1016/0142-1123(83)90026-9
  • J. Gayda and R. V. Miner: ‘The effect of microstructure on 650 °C fatigue crack growth in P/M astroloy’, Metall. Trans. A, 1983, 14, (11), 2301–2308. doi: 10.1007/BF02663305
  • J. Tong and J. Byrne: ‘Effects of frequency on fatigue crack growth at elevated temperature’, Fatigue Fract. Eng. Mater. Struct., 1999, 22, (3), 185–193. doi: 10.1046/j.1460-2695.1999.00160.x
  • J. Dahal, K. Maciejewski, and H. Ghonem: ‘Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy’, Int. J. Fatigue, 2013, 57, 93–102. doi: 10.1016/j.ijfatigue.2012.12.009
  • T. Billot, P. Villechaise, M. Jouiad, and J. Mendez: ‘Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy’, Int. J. Fatigue, 2010, 32, (5), 824–829. doi: 10.1016/j.ijfatigue.2009.07.003
  • H. Y. Li, J. F. Sun, M. C. Hardy, H. E. Evans, S. J. Williams, T. J. A. Doel, and P. Bowen: ‘Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy’, Acta Mater., 2015, 90, 355–369. doi: 10.1016/j.actamat.2015.02.023
  • J. D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu: ‘High resolution digital image correlation measurements of strain accumulation in fatigue crack growth’, Int. J. Fatigue, 2013, 57, 140–150. doi: 10.1016/j.ijfatigue.2012.06.010
  • Y. W. Lu, C. Lupton, M. L. Zhu, and J. Tong: ‘In situ experimental study of near-tip strain evolution of fatigue cracks’, Exp. Mech., 2015, 55, (6), 1175–1185. doi: 10.1007/s11340-015-0014-4
  • L. Viskari, M. Hörnqvist, K. L. Moore, Y. Cao, and K. Stiller: ‘Intergranular crack tip oxidation in a Ni-base superalloy’, Acta Mater., 2013, 61, (10), 3630–3639. doi: 10.1016/j.actamat.2013.02.050
  • R. Jiang, N. Gao, and P. A. S. Reed: ‘Influence of orientation-dependent grain boundary oxidation on fatigue cracking behaviour in an advanced Ni-based superalloy’, J. Mater. Sci., 2015, 50, (12), 4379–4386. doi: 10.1007/s10853-015-8992-2
  • L. Ma and K.-M. Chang: ‘Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783’, Scr. Mater., 2003, 48, (9), 1271–1276. doi: 10.1016/S1359-6462(03)00049-6
  • C. F. Miller, G. W. Simmons, and R. P. Wei: ‘Evidence for internal oxidation during oxygen enhanced crack growth in P/M Ni-based superalloys’, Scr. Mater., 2003, 48, (1), 103–108. doi: 10.1016/S1359-6462(02)00355-X
  • H. E. Evans, H. Y. Li, and P. Bowen: ‘A mechanism for stress-aided grain boundary oxidation ahead of cracks’, Scr. Mater., 2013, 69, (2), 179–182. doi: 10.1016/j.scriptamat.2013.03.026
  • A. Karabela, L. G. Zhao, J. Tong, N. J. Simms, J. R. Nicholls, and M. C. Hardy: ‘Effects of cyclic stress and temperature on oxidation damage of a nickel-based superalloy’, Mater. Sci. Eng. A, 2011, 528, (19–20), 6194–6202. doi: 10.1016/j.msea.2011.04.029
  • D. Bika and C. J. McMahon Jr: ‘A model for dynamic embrittlement’, Acta Metall. Mater., 1995, 43, (5), 1909–1916. doi: 10.1016/0956-7151(94)00387-W
  • J. A. Pfaendtner and C. J. McMahon Jr: ‘Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures—an example of dynamic embrittlement’, Acta Mater., 2001, 49, (16), 3369–3377. doi: 10.1016/S1359-6454(01)00005-2
  • U. Krupp, W. M. Kane, C. Laird, and C. J. McMahon: ‘Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement’, Mater. Sci. Eng. A, 2004, 387389, 409–413. doi: 10.1016/j.msea.2004.05.053
  • U. Krupp, W. M. Kane, X. Liu, O. Dueber, C. Laird, and C. J. McMahon Jr: ‘The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718’, Mater. Sci. Eng. A, 2003, 349, (1–2), 213–217. doi: 10.1016/S0921-5093(02)00753-0
  • D. A. Woodford: ‘Gas phase embrittlement and time dependent cracking of nickel based superalloys’, Energ. Mater., 2006, 1, (1), 59–79. doi: 10.1179/174892306X99679
  • R. H. Bricknell and D. A. Woodford: ‘Grain boundary embrittlement of the iron-base superalloy IN903A’, Metall. Trans. A, 1981, 12, (9), 1673–1680. doi: 10.1007/BF02643573
  • R. H. Bricknell and D. A. Woodford: ‘The embrittlement of nickel following high temperature air exposure’, Metall. Trans. A, 1981, 12, (3), 425–433. doi: 10.1007/BF02648539
  • H. Ghonem and D. Zheng: ‘Depth of intergranular oxygen diffusion during environment-dependent fatigue crack growth in alloy 718’, Mater. Sci. Eng. A, 1992, 150, (2), 151–160. doi: 10.1016/0921-5093(92)90107-C
  • C. J. McMahon Jr: ‘Comments on “Identification of SAGBO-induced damage zone ahead of crack tip to characterize sustained loading crack growth in alloy 783”’, Scr. Mater., 2006, 54, (2), 305–307. doi: 10.1016/j.scriptamat.2005.09.030
  • L. G. Zhao, J. Tong, and M. C. Hardy: ‘Prediction of crack growth in a nickel-based superalloy under fatigue-oxidation conditions’, Eng. Fract. Mech., 2010, 77, (6), 925–938. doi: 10.1016/j.engfracmech.2010.02.005
  • A. Karabela, L. G. Zhao, B. Lin, J. Tong, and M. C. Hardy: ‘Oxygen diffusion and crack growth for a nickel-based superalloy under fatigue-oxidation conditions’, Mater. Sci. Eng. A, 2013, 567, 46–57. doi: 10.1016/j.msea.2012.12.088
  • B. J. Foss, M. C. Hardy, D. J. Child, D. S. McPhail, and B. A. Shollock: ‘Oxidation of a commercial nickel-based superalloy under static loading’, JOM, 2014, 66, (12), 2516–2524. doi: 10.1007/s11837-014-1196-4
  • H. S. Kitaguchi, M. P. Moody, H. Y. Li, H. E. Evans, M. C. Hardy, and S. Lozano-Perez: ‘An atom probe tomography study of the oxide–metal interface of an oxide intrusion ahead of a crack in a polycrystalline Ni-based superalloy’, Scr. Mater., 2015, 97, 41–44. doi: 10.1016/j.scriptamat.2014.10.025
  • A. Sato, Y. L. Chiu, and R. C. Reed: ‘Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications’, Acta Mater., 2011, 59, (1), 225–240. doi: 10.1016/j.actamat.2010.09.027
  • S. Y. Yu, H. Y. Li, M. C. Hardy, S. A. McDonald, and P. Bowen: ‘Mechanisms of dwell fatigue crack growth in an advanced nickel disc alloy RR1000’, Eurosuperalloys, 2014, 2014, 03002.
  • E. Storgärds and K. Simonsson: ‘Crack length evaluation for cyclic and sustained loading at high temperature using potential drop’, Exp. Mech., 2015, 55, (3), 559–568. doi: 10.1007/s11340-014-9963-2
  • ‘Standard Test Method for Measurement of Fatigue Crack Growth Rates’, ASTM E647.
  • E. Marie and P. J. Withers: ‘Quantitative X-ray tomography’, Int. Mater. Rev., 2014, 59, (1), 1–43. doi: 10.1179/1743280413Y.0000000023
  • B. Y. He, O. L. Katsamenis, B. G. Mellor, and P. A. S. Reed: ‘3-D analysis of fatigue crack behaviour in a shot peened steam turbine blade material’, Mater. Sci. Eng. A, 2015, 642, 91–103. doi: 10.1016/j.msea.2015.06.082
  • H. Proudhon, A. Moffat, I. Sinclair, and J.-Y. Buffiere: ‘Three-dimensional characterisation and modelling of small fatigue corner cracks in high strength Al-alloys’, C. R. Phys., 2012, 13, (3), 316–327. doi: 10.1016/j.crhy.2011.12.005
  • A. J. Moffat, B. G. Mellor, I. Sinclair, and P. A. S. Reed: ‘The mechanisms of long fatigue crack growth behaviour in Al–Si casting alloys at room and elevated temperature’, Mater. Sci. Tech., 2007, 23, (12), 1396–1401. doi: 10.1179/174328407X243988
  • J. L. Olivier, M. D. M. Messé, A. King, J. Y. Buffière, C. M. F. Rae: ‘Investigation of fatigue crack propagation in nickel superalloy using diffraction contrast tomography and phase contrast tomography’, Adv. Mater. Res., 2014, 891, 923–928.
  • J. Telesman, T. P. Gabb, A. Garg, P. Bonacuse, and J. Gayda: ‘Effect of microstructure on time dependent fatigue crack growth behavior in a P/M turbine disk alloy’, 807–816; 2008, TMS Superalloy 2008. Warrendale, PA: The Minerals, Metals & Materials Society.
  • P. Bing, Q. Kemao, X. Huimin, and A. Anand: ‘Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review’, Meas. Sci. Technol., 2009, 20, (6), 062001 (17 pp.).
  • F. Di Gioacchino and J. Quinta da Fonseca: ‘Plastic strain mapping with sub-micron resolution using digital image correlation’, Exp. Mech., 2013, 53, (5), 743–754. doi: 10.1007/s11340-012-9685-2
  • F. Di Gioacchino and J. Quinta da Fonseca: ‘An experimental study of the polycrystalline plasticity of austenitic stainless steel’, Int. J. Plast., 2015, 74, 92–109. doi: 10.1016/j.ijplas.2015.05.012
  • J. C. Stinville, M. P. Echlin, D. Texier, F. Bridier, P. Bocher, and T. M. Pollock: ‘Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation’, Exp. Mech., 2015, 56, (2), 197–216.
  • J. C. Stinville, N. Vanderesse, F. Bridier, P. Bocher, and T. M. Pollock: ‘High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy’, Acta Mater., 2015, 98, 29–42. doi: 10.1016/j.actamat.2015.07.016
  • J. L. Walley, R. Wheeler, M. D. Uchic, and M. J. Mills: ‘In-situ mechanical testing for characterizing strain localization during deformation at elevated temperatures’, Exp. Mech., 2012, 52, (4), 405–416. doi: 10.1007/s11340-011-9499-7
  • J. L. W. Carter, M. W. Kuper, M. D. Uchic, and M. J. Mills: ‘Characterization of localized deformation near grain boundaries of superalloy René-104 at elevated temperature’, Mater. Sci. Eng. A, 2014, 605, 127–136. doi: 10.1016/j.msea.2014.03.048
  • M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh: ‘Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction’, Acta Mater., 2006, 54, (2), 539–548. doi: 10.1016/j.actamat.2005.08.046
  • A. J. Wilkinson, G. Meaden, and D. J. Dingley: ‘High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity’, Ultramicroscopy, 2006, 106, (4–5), 307–313. doi: 10.1016/j.ultramic.2005.10.001
  • T. Zhang, J. Jiang, B. A. Shollock, T. B. Britton, and F. P. E. Dunne: ‘Slip localization and fatigue crack nucleation near a non-metallic inclusion in polycrystalline nickel-based superalloy’, Mater. Sci. Eng. A, 2015, 641, 328–339. doi: 10.1016/j.msea.2015.06.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.