1,192
Views
34
CrossRef citations to date
0
Altmetric
Reviews

The effects of neutron radiation on nickel-based alloys

ORCID Icon
Pages 518-536 | Received 31 Jan 2016, Accepted 01 May 2016, Published online: 29 Jun 2016

References

  • T. Abram and S. Ion: ‘Generation-IV nuclear power: a review of the state of the science’, Energy Policy, 2008, 36, (12), 4323–4330. doi: 10.1016/j.enpol.2008.09.059
  • A. F. Rowcliffe, L. K. Mansur, D. T. Hoelzer and R. K. Nanstad: ‘Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors’, J. Nucl. Mater., 2009, 392, (2), 341–352.
  • G. O. Hayner, E. L. Shaber, R. E. Mizia, P. A. Lessing, R. N. Wright, T. C. Totemeier, W. E. Windes, W. R. Corwin, T. D. Burchell, J. M. Corum, J. W. Klett, R. K. Nanstad, L. L. Snead, R. E. Stoller, P. L. Rittenhouse, R. W. Swindeman and D. F. Wilson: ‘Next generation nuclear plant materials selection and qualification program plan’, Idaho National Engineering Laboratory Report No. INEEL/EXT-03-001128 (Rev. 0), Idaho Falls, Idaho, November 7, 2003.
  • T. Schulenberg, L. Leung, D. Brady, Y. Oka, K. Yamada, Y. Bae and G. Willermoz: ‘IAEA Report: IAEA-CN-164-5S06: Supercritical Water-Cooled Reactor (SCWR) Development through GIF Collaboration’, Technical report, IAEA.
  • C. D. Judge, N. Gauquelin, L. Walters, M. Wright, J. I. Cole, J. Madden, G. A. Botton and M. Griffiths: ‘Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen’, J. Nucl. Mater., 2015, 457, (2), 165–172. doi: 10.1016/j.jnucmat.2014.10.008
  • D. Chersola, G. Lomonaco and R. Marotta: ‘The VHTR and GFR and their use in innovative symbiotic fuel cycles’, Prog. Nucl. Energy, 2015, 83, 443–459. doi: 10.1016/j.pnucene.2014.12.005
  • S. Bortot, P. C. Camprini, G. Grasso and C. Artioli: ‘Conceptual core design study for a high-flux LFR demonstrator’, Prog. Nucl. Energy, 2012, 54, (1), 56–63. doi: 10.1016/j.pnucene.2011.09.001
  • C. Cabet and F. Rouillard: ‘Corrosion of high temperature metallic materials in VHTR’, J. Nucl. Mater., 2009, 392, (2), 235–242. doi: 10.1016/j.jnucmat.2009.03.029
  • O. D. Kazachkovskii: ‘Radiation swelling of materials’, Atomic Energy, 1996, 81, (2), 605–610. doi: 10.1007/BF02415665
  • F. A. Comprelli, H. J. Busboom and C. N. Spalaris: ‘Comparison of radiation damage studies and fuel cladding performance for Inconel-800’, Irradiation Effects in Structural Alloys for Thermal and Fast Reactors, ASTM STP 457, American Society for Testing and Materials, 1969, 400–413.
  • T. Pollock and S. Tin: ‘Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties’, J. Propul. Power, 2006, 22, (2), 361–374. doi: 10.2514/1.18239
  • C. Judge, M. Griffiths, L. Walters, M. Wright, G. Bickel, O. Woo, M. Stewart, S. Douglas and F. Garner: ‘Embrittlement of nickel alloys in a CANDU reactor environment’, in ‘25th symposium on effects of radiation on nuclear materials’, (ed. T. Yamamoto), ASTM STP 1547, 161–175; 2011, West Conshohocken, PA, ASTM International, DOI 10.1520/STP104242.
  • M. Griffiths, G. Bickel and S. Douglas: ‘Irradiation-induced embrittlement of Inconel 600 flux detectors in CANDU reactors’, J. Energy Power Eng., 2012, 6, 188–194.
  • S. J. Zinkle and G. S. Was: ‘Materials challenges in nuclear energy’, Acta Mater., 2013, 61, (3), 735–758. doi: 10.1016/j.actamat.2012.11.004
  • K. L. Murty and I. Charit: ‘Structural materials for Gen-IV nuclear reactors: challenges and opportunities’, J. Nucl. Mater., 2008, 383, (1–2), 189–195. doi: 10.1016/j.jnucmat.2008.08.044
  • P. Ford, P. Combrade and P. Scott: ‘Degradation of Alloy 600 SG Tubes in Secondary PWR coolant, environmentally-assisted degradation of nickel-base alloys in LWRs’, 2011, Sweden, Advanced Nuclear Technology International.
  • P. Scott, P. Combrade and P. Ford: ‘Environmentally-assisted degradation of nickel-base alloys in LWRs (Chapter 2.2.3.1)’, 2011, Sweden, Advanced Nuclear Technology International.
  • H. K. Zhang, Z. Yao, M. A. Kirk and M. R. Daymond: ‘Stability of Ni3(Al, Ti) gamma prime precipitates in a nickel-based superalloy inconel X-750 under heavy ion irradiation’, Metall. Mater. Trans. A, 2014, 45, (8), 3422–3428. doi: 10.1007/s11661-014-2309-y
  • J. Dong, X. Liu, X. Xie and R. Thompson: ‘The segregation of sulfur and phosphorus in nickel-base Alloy 718’, Acta Metall. Sinica (English Letters), 2009, 10, (6), 510–514.
  • A. L. Ward, J. M. Steicher and P. L. Knecht: ‘Irradiation effects on the microstructure and properties of metals’, 156; 1976, American Society for Testing and Materials, ASTM STP 611.
  • T. T. Claudson and H. J. Pessl: ‘Irradiation effects on high-temperature reactor structural metals’, ASTM STP 380: Flow Fract. Metals Alloys Nucl. Environ., 1965 1, 156–171.
  • J. Moteff, F. C. Robertshaw and F. D. Kingsbury: ‘Effects of neutron irradiation on the stress-rupture properties of high-temperature precipitation hardening alloys’, J. Nucl. Mater., 1965, 17, (3), 245–258. doi: 10.1016/0022-3115(65)90168-6
  • T. Claudson: ‘Effects of irradiation on structural materials’, ASTM STP, 1976, 426, 67.
  • M. L. Bleiberg and J. W. Bennett: ‘Radiation effects in breeder reactor structural materials’, Technical report, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., New York (1977).
  • C. Cawthorne and E. J. Fulton: ‘Voids in irradiated stainless steel’, Nature, 1967, 216, 575–576. doi: 10.1038/216575a0
  • W. G. Johnston, J. H. Rosolowski, A. M. Turkalo and T. Lauritzen: ‘An experimental survey of swelling in commercial Fe-Cr-Ni alloys bombarded with 5 MeV Ni Ions’, J. Nucl. Mater., 1974, 54, (1), 24–40. doi: 10.1016/0022-3115(74)90073-7
  • J. Bates and W. Johnston: Proceedings of the international conference on radiation effects in breeder reactor structural materials, The Metallurgical Society of AIME, New York (1977) 625.
  • R. L. Klueh and A. T. Nelson: ‘Ferritic/martensitic steels for next-generation reactors’, J. Nucl. Mater., 2007, 371, (13), 37–52. doi: 10.1016/j.jnucmat.2007.05.005
  • E. E. Bloom, J. O. Stiegler, A. F. Rowcliffe and J. M. Leitnaker: ‘Austenitic stainless steels with improved resistance to radiation-induced swelling’, Scripta Metall., 1976, 10, (4), 303–308. doi: 10.1016/0036-9748(76)90081-8
  • P. Yvon and F. Carre: ‘Structural materials challenges for advanced reactor systems’, J. Nucl. Mater., 2009, 385, (2), 217–222. doi: 10.1016/j.jnucmat.2008.11.026
  • G. R. Gessel and C. L. White: ‘DOE Cladding/Duct Materials Development Quarterly Progress Report’, TC-160-18, Technical report (1978).
  • H. Ullmaier: ‘Radiation damage in metallic materials’, MRS Bull., 1997, 22, 14–21.
  • L. R. Greenwood and F. A. Garner: ‘Hydrogen generation arising from the 59Ni (n, p) reaction and its impact on fission-fusion correlations’, J. Nucl. Mater., 1996, 233–237, 1530–1534. doi: 10.1016/S0022-3115(96)00264-4
  • F. Garner, L. Greenwood and B. Oliver: ‘A re-evaluation of helium/dpa and hydrogen/dpa ratios for fast reactor and thermal reactor data used in fission-fusion correlations’, Technical report, Proceeding of a Technical Committee Meeting, Obnisk, Russian Federation, IAEA-TECDOC-1039 (16–19 June,1997).
  • L. Greenwood, F. Garner, B. Oliver, M. Grosseck and W. Wolfer: ‘Surprisingly large generation and retention of helium and hydrogen in pure nickel irradiated at high temperatures and high neutron exposures’, ASTM Int., 2006, 1, (4), 1–11, DOI 10.1520/JAI11365.
  • S. J. Zinkle, W. G. Wolfer, G. L. Kulcinski and L. E. Seitzman: ‘Part II. Effect of oxygen and helium on void formation in metals’, Philos. Mag. A, 1987, 55, (1), 127–140. doi: 10.1080/01418618708209804
  • H. Schroeder and H. Ullmaier: ‘Helium and hydrogen effects on the embrittlement of iron- and nickel-based alloys’, J. Nucl. Mater., March–April 1991, 179–181, (1), 118–124.
  • F. Garner, B. Oliver, L. Greenwood, D. Edwards and S. Bruemmer: ‘Generation and retention of helium and hydrogen in austenitic steels irradiated in a variety of LWR and test reactor spectral environments’, Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (US) (2002).
  • C. H. Lund: ‘Physical metallurgy of nickel based superalloys’, Technical report, Battelle Memorial Inst. Defense Metals Information Center, Columbus, OH (1961).
  • D. J. Tillack: ‘Selection of nickel, nickel-copper, nickel-chromium, and nickel-chromium-iron alloys’, Technical report, ASM Handbook Volume 6, Welding, Brazing, and Soldering (ASM International) (1993).
  • Y. Yin, R. G. Faulkner, P. Moreton, I. Armson and P. Coyle: ‘Grain boundary chromium depletion in austenitic alloys’, J. Mater. Sci., 2010, 45, (21), 5872–5882. doi: 10.1007/s10853-010-4666-2
  • Y. Yin, F. Zhu, R. Faulkner, E. Miller, P. Moreton, I. Armson and B. Borradaile: ‘Predicting chromium depletion of nickel base alloys’, in ‘15th international conference on environmental degradation of materials in nuclear power systems-water reactors’ (eds. J. T. Busby, G. Ilevbare and P. L. Andresen), 2012, Hoboken, NJ, John Wiley & Sons, DOI 10.1002/9781118456835.ch32.
  • R. Bajaj, W. Mills, M. Lebo, B. Hyatt and M. Burke: ‘Irradiation-assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625’, Seventh international symposium on environmental degradation of materials in nuclear power systems–water reactors, Vol. 2, 1093–1107; 1995, Brechenridge, CO, NACE.
  • R. Baumann and T. Hossain: ‘Electronic device and process achieving a reduction in alpha particle emissions from boron-based compounds essentially free of boron-10’, US Patent 5,395,783, 7 March 1995.
  • M. Kangilaski: ‘Effects of neutron radiation on structural materials’, Technical report, Battelle Memorial Inst., Columbus, Ohio. Radiation Effects Information Center (1967).
  • F. Wiffen: ‘Response of Inconel 600 to simulated fusion reactor irradiation. Effects of radiation on structural materials’, ASTM STP, 1979, 683, 88.
  • T. M. Angeliu, J. T. Ward and J. K. Witter: ‘Assessing the effects of radiation damage on Ni-base alloys for the Prometheus space reactor system’, J. Nucl. Mater., 2007, 366, (1), 223–237. doi: 10.1016/j.jnucmat.2007.01.217
  • M. I. Baskes: ‘Recent advances in understanding helium embrittlement in metals’, MRS Bull., 1986, 11, (4), 14–18. doi: 10.1557/S0883769400069116
  • W. J. Mills: ‘Fracture toughness of two Ni-Fe-Cr alloys’, Eng. Fract. Mech., 1987, 26, (2), 223–238. doi: 10.1016/0013-7944(87)90199-8
  • C. Hunter, R. Fish and J. Holmes: ‘Channel fracture in irradiated EBR-II type 304 stainless steel’, Trans. Amer. Nucl. Soc., 1972, 15, 254–255.
  • R. L. Fish: ‘Notch effect on the tensile properties of fast-reactor-irradiated type 304 stainless steel’, Nucl. Technol., 1976, 31, (1), 85–95.
  • L. A. James: ‘Effect of fast neutron irradiation on fatigue-crack growth behavior of three nickel-base alloys’, Nucl. Technol., 1981, 53, (1), 64–68.
  • J.-J. Kai and R. D. Lee: ‘Effects of proton irradiation on the microstructural and microchemical evolution of Inconel 600 alloy’, J. Nucl. Mater., 1993, 207, 286–294. doi: 10.1016/0022-3115(93)90271-Y
  • S. Porollo, Y. Konobeev, A. Dvoriashin, M. Alexander, V. Krigan and F. Garner: ‘Determination of the lower temperature limit of void swelling of stainless steels at relatively low displacement rates’, Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (US) (2002).
  • L. K. Mansur: ‘Effects of point defect trapping and solute segregation on irradiation-induced swelling and creep’, J. Nucl. Mater., 1979, 83, (1), 109–127. doi: 10.1016/0022-3115(79)90597-X
  • M. Kurban, U. Erb and K. T. Aust: ‘A grain boundary characterization study of boron segregation and carbide precipitation in Alloy 304 austenitic stainless steel’, Scripta Mater., 2006, 54, (6), 1053–1058. doi: 10.1016/j.scriptamat.2005.11.055
  • S. I Golubov, R. E. Stoller, S. J. Zinkle and A. M. Ovcharenko: ‘Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing’, J. Nucl. Mater., 2007, 361, (2), 149–159. doi: 10.1016/j.jnucmat.2006.12.032
  • L. K. Mansur and K. Farrell: ‘On mechanisms by which a soft neutron spectrum may induce accelerated embrittlement’, J. Nucl. Mater., 1990, 170, (3), 236–245. doi: 10.1016/0022-3115(90)90294-W
  • P. L. Andresen, F. P. Ford, S. M. Murphy and J. M. Perks: ‘Modeling and prediction of irradiation assisted stress corrosion cracking’, Seventh international symposium on environmental degradation of materials in nuclear power systems – Water reactors, Vol. 2, 893–906; 1990, Brechenridge, CO, NACE.
  • A. F. Rowcliffe and J. A. Horak: ‘Tensile properties and fracture behavior of irradiated nickel alloys’, Trans. Amer. Nucl. Soc., 1981, 38, 226.
  • F. Huang and R. Fish: ‘Effects of radiation on materials’, ASTM STP, 1985, 870, 720.
  • W. J. S. Yang and B. J. Makenas: ‘Effects of radiation on materials’, ASTM STP, 1985, 870, (2), 127.
  • S. Vaidyanathan: ‘Effects of irradiation on structural materials’, ASTM STP, 1982, 782, 619.
  • R. Bajaj: ‘Effects of radiation on materials’, ASTM STP, 1981, 725, 326.
  • A. L. Chang: ‘Micro and macro mechanics of crack growth’, 1982, Warrenville, PA, Metallurgical Society of AIME.
  • R. Boothby and D. Harries: ‘Proceedings of the international conference on mechanical behaviour and nuclear applications of stainless steel at elevated temperatures’, The Metals Society, London, 1982.
  • R. M. Boothby: ‘The microstructure of fast neutron irradiated nimonic PE16’, J. Nucl. Mater., 1996, 230, (2), 148–157. doi: 10.1016/0022-3115(96)00169-9
  • G. Broomfield: ‘Irradiation effects in structural alloys for thermal and fast reactors’, ASTM STP, 1965, 457, 38.
  • A. F. Rowcliffe: ‘Effects of radiation on structural metals’, ASTM STP, 1967, 426, 161.
  • R. Nicholson and R. Jones: ‘Effects of radiation on materials’, ASTM STP, 1979, 683, 529.
  • D. M. Symons: ‘A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750’, Eng. Fract. Mech., 2001, 68, (6), 751–771. doi: 10.1016/S0013-7944(00)00123-5
  • J. Walsh and B. Rear: ‘Direct evidence for boron segregation to grain boundaries in a nickel-base alloy by secondary ion mass spectrometry’, Metall. Mater. Transact. A, 1975, 6, (1), 226–229. doi: 10.1007/BF02673697
  • A. Rowcliffe, G. Carpenter, H. Merrick and R. Nicholson: ‘An electron microscope investigation of high temperature embrittlement of irradiated stainless steels’, Effects Radiat. Struct. Mater. ASTM-STP, 1967, 426, 161–199. doi: 10.1520/STP41323S
  • T. Allen and G. Was: ‘The effect of ordering on radiation-induced segregation in austenitic iron- and nickel-base alloys’, in ‘Effects of radiation on materials: 18th international symposium (STP 1325)’, (eds. R. K. Nanstad, M. L. Hamilton, F. A. Garner and A. S. Kumar), 619; 1999, West Conshohocken, PA, ASTM.
  • J. Perks, A. Marwick and C. English: ‘Computer code to calculate radiation-induced segregation in concentrated ternary alloys’, AERE-R-12121, Technical report (1986).
  • Y. Yang, K. Field and J. B. T. Allen: ‘Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels’, Technical report ORNL/TM-2015/479 (2015).
  • L. Fournier, D. Delafosse and T. Magnin: ‘Cathodic hydrogen embrittlement in Alloy 718’, Mater. Sci. Eng. A, 1999, 269, (1–2), 111–119. doi: 10.1016/S0921-5093(99)00167-7
  • P. D. Hicks and C. J. Altstetter: ‘Hydrogen-enhanced cracking of superalloys’, Metall. Transact. A, 1992, 23, (1), 237–249. doi: 10.1007/BF02660868
  • M. A. Stopher and P. E. J. Rivera-Diaz-del-Castillo: ‘Hydrogen embrittlement in bearing steels’, Mater. Sci. Technol. 2016, 1–10 (online).
  • E. V. Kornelsen and A. A. V. Gorkum: ‘A study of bubble nucleation in tungsten using thermal desorption spectroscopy: clusters of 2 to 100 helium atoms’, J. Nucl. Mater., 1980, 92, 79–88. doi: 10.1016/0022-3115(80)90144-0
  • G. Hultquist, M. J. Graham, J. L. Smialek and B. Jonsson: ‘Hydrogen in metals studied by thermal desorption spectroscopy (TDS)’, Corros. Sci., 2015, 93, 324–326. doi: 10.1016/j.corsci.2015.01.003
  • G. Young, N. Lewis, M. Hanson, W. Matuszyk, B. Wiersma and S. Gonzalez: ‘osti.govKAPL Report LM-01K034; Microstructural and microchemical characterization of dual step aged alloy X-750 and its relationship to environmentally assisted cracking’, Technical report (May 2001). osti.gov.
  • H. Zhang, Z. Yao, M. R. Daymond and M. A. Kirk: ‘Cavity morphology in a Ni based superalloy under heavy ion irradiation with cold pre-injected helium’, J. Appl. Phys., 2014, 115, 103508.
  • F. Garner and D. Gelles: ‘Effects of radiation on materials’, ASTM STP, 1990, 1046, (2), 673.
  • C. San Marchi, B. Somerday and S. Robinson: ‘Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures’, Int. J. Hydr. Energy, 2007, 32, (1), 100–116. doi: 10.1016/j.ijhydene.2006.05.008
  • F. Fischer, J. Svoboda and E. Kozeschnik: ‘Interstitial diffusion in systems with multiple sorts of traps’, Model. Simul. Mater. Sci. Eng., 2013, 21, (2), 1–13. doi: 10.1088/0965-0393/21/2/025008
  • M. A. Stopher, P. Lang, E. Kozeschnik and P. E. J. Rivera-Diaz-del-Castillo: ‘Modelling hydrogen migration and trapping in steels’, Mater. Des. 2016, 106, 205–215, DOI 10.1016/j.matdes.2016.05.051.
  • J. Kameda and C. J. McMahon: ‘Solute segregation and hydrogen-induced intergranular fracture in an alloy steel’, Metall. Transact. A, 1983, 14, (4), 903–911. doi: 10.1007/BF02644295
  • M. I. Baskes and V. Vitek: ‘Trapping of hydrogen and helium at grain boundaries in nickel: an atomistic study’, Metall. Transact. A, 1985, 16, (9), 1625–1631. doi: 10.1007/BF02663018
  • R. Sugano, K. Morishita, H. Iwakiri and N. Yoshida: ‘Effects of dislocation on thermal helium desorption from iron and ferritic steel’, J. Nucl. Mater., 2002, 307–311, 941–945. doi: 10.1016/S0022-3115(02)01098-X
  • Y. Zakaria: ‘Thermal desorption analysis of helium trapping in ion-implanted beryllium’, Open Access Dissertations and Theses. Paper 2371.
  • G. J. Thomas, W. A. Swansiger and M. I. Baskes: ‘Low-temperature helium release in nickel’, J. Appl. Phys., 1979, 50, (11), 6942–6947. doi: 10.1063/1.325848
  • J. Ehrenberg, B. M. U. Scherzer and R. Behrisch: ‘Thermal desorption spectroscopy of He from Ni at and below saturation’, Radiat. Effects, 1983, 78, (1–4), 405–416. doi: 10.1080/00337578308207389
  • J. Barnaby, P. Barton, R. Boothby, A. Fraser and G. Slattery: ‘Post-irradiation mechanical properties of AISI type 316 steel and Nimonic PE16 alloy’, in ‘Conference on radiation effects in breeder reactor structural materials’, Scottsdale, AZ, 19–23 June (eds. M. L. Bleiberg and J. W. Bennett), 159–175; 1977, New York, American Institute of Mining, Metallurgical, and Petroleum Engineers..
  • D. Harman: ‘Postirradiation tensile and creep-rupture properties of several experimental heats of incoloy 800 at 700 and 760°C’, Technical report, Oak Ridge National Lab., Tenn. (1968).
  • L. K. Mansur: ‘Theoretical evaluation of a mechanism of precipitate-enhanced cavity swelling during irradiation’, Philos. Mag. A, 1981, 44, (4), 867–877. doi: 10.1080/01418618108239554
  • F. Garner: ‘Materials science and technology’, Nucl. Mater., 1994, 10A, (part 1), 420.
  • J. C. Zhao, M. Larsen and V. Ravikumar: ‘Phase precipitation and time–temperature-transformation diagram of Hastelloy X’, Mater. Sci. Eng. A, 2000, 293, (1), 112–119. doi: 10.1016/S0921-5093(00)01049-2
  • K. Bhanu S. Rao, H. Schuster and G. R. Halford: ‘On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H’, Scripta Metall. Mater., 1994, 31, (4), 381–386. doi: 10.1016/0956-716X(94)90004-3
  • Y. F. Yin, R. G. Faulkner and Z. Lu: ‘Irradiation-induced precipitation modelling of ferritic steels’, J. Nucl. Mater., 2009, 389, (2), 225–232. doi: 10.1016/j.jnucmat.2009.02.006
  • K. C. Russell: ‘Phase stability under irradiation’, Prog. Mater. Sci., 1984, 28, (3–4), 229–434. doi: 10.1016/0079-6425(84)90001-X
  • J. R. Lindgren: ‘Irradiation effects on high-temperature gas-cooled reactor structural materials’, Nucl. Technol., 1984, 66, (3), 607–618.
  • P. Caceras, B. Ralph, G. Allen and R. Wild: ‘Grain boundary segregation in Inconel 600’, Surf. Interf. Anal., 1988, 12, (3), 191–197. doi: 10.1002/sia.740120304
  • J. K. Heuer, P. R. Okamoto, N. Q. Lam and J. F. Stubbins: ‘Disorder-induced melting in nickel: implication to intergranular sulfur embrittlement’, J. Nucl. Mater., 2002, 301, (2), 129–141. doi: 10.1016/S0022-3115(02)00707-9
  • W. C. Johnson, J. E. Doherty, B. H. Kear and A. F. Giamei: ‘Confirmation of sulfur embrittlement in nickel alloys’, Scripta Metall., 1974, 8, 971–974. doi: 10.1016/0036-9748(74)90394-9
  • B. J. Berkowitz and R. D. Kane: ‘The effect of impurity segregation on the hydrogen embrittlement of a high strength nickel base alloy in H2S environments’, Corrosion, 1980, 36, (1), 24–29. doi: 10.5006/0010-9312-36.1.24
  • E. Lee and L. Mansur: ‘Mechanisms of swelling suppression in cold-worked phosphorous-modified Fe-Ni-Cr alloys’, Philos. Mag. A, 1990, 61, (5), 733–749. doi: 10.1080/01418619008231945
  • T. Yamamoto, G. R. Odette, P. Miao, D. Hoelzer, J. Bentley, N. Hashimoto, H. Tanigawa and R. J. Kurtz: ‘The transport and fate of helium in nanostructured ferritic alloys at fusion relevant He/dpa ratios and dpa rates’, J. Nucl. Mater., 2007, 367, 399–410. doi: 10.1016/j.jnucmat.2007.03.047
  • Y. Gan, H. Zhao, D. T. Hoelzer and D. Yun: ‘Energetic study of helium cluster nucleation and growth in 14YWT through first principles’, Materials, 2016, 9, (1), 17. doi: 10.3390/ma9010017
  • D. T. Hoelzer, J. Bentley, M. A. Sokolov, M. K. Miller, G. R. Odette and M. Alinger: ‘Influence of particle dispersions on the high-temperature strength of ferritic alloys’, J. Nucl. Mater., 2007, 367, 166–172. doi: 10.1016/j.jnucmat.2007.03.151
  • P. D. Edmondson, C. M. Parish, Q. Li and M. K. Miller: ‘Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy’, J. Nucl. Mater., 2014, 445, (1–3), 84–90. doi: 10.1016/j.jnucmat.2013.10.024
  • D. T. Hoelzer , J. P. Shingledecker, R. L. Klueh, M. K. Miller and J. Bentley: ‘The microstructural stability of a ruptured thermal creep specimen of MA957’, DOE/ER-0313/44 (June 30, 2008) 53.
  • H. Kronmüller and P. Vargas: ‘Binding energy of hydrogen-impurity complexes in nickel’, Philos. Mag. A, 1985, 51, (1), 59–70. doi: 10.1080/01418618508245269
  • S.-M. Lee and J.-Y. Lee: ‘The trapping and transport phenomena of hydrogen in nickel’, Metall. Transact. A, 1986, 17, (2), 181–187. doi: 10.1007/BF02643893
  • F. Jambon, L. Marchetti, M. Sennour, F. Jomard and J. Chene: ‘SIMS and TEM investigation of hydrogen trapping on implantation defects in a nickel-based superalloy’, J. Nucl. Mater., 2015, 466, 120–133. doi: 10.1016/j.jnucmat.2015.07.045
  • J. E. Angelo, N. R. Moody and M. I. Baskes: ‘Trapping of hydrogen to lattice defects in nickel’, Model. Simul. Mater. Sci. Eng., 1995, 3, (3), 289. doi: 10.1088/0965-0393/3/3/001
  • A. Turnbull, R. Ballinger, I. Hwang, M. Morra, M. Psaila-Dombrowski and R. Gates: ‘Hydrogen transport in nickel-base alloys’, Metall. Transact. A, 1992, 23, (12), 3231–3244. doi: 10.1007/BF02663432
  • D. Symons: ‘An investigation into the effects of hydrogen on the fracture and deformation behavior of alloy X-750’, PhD Thesis, (1994).
  • N. Moody, S. Robinson, S. Myers and F. Greulich: ‘Deuterium concentration profiles in Fe- Ni- Co alloys electrochemically charged at room temperature’, Acta Metall., 1989, 37, (1), 281–290. doi: 10.1016/0001-6160(89)90286-1
  • B. G. Pound: ‘The effect of aging on hydrogen trapping in precipitation-hardened alloys’, Corros. Sci., 2000, 42, (11), 1941–1956. doi: 10.1016/S0010-938X(00)00036-6
  • D. H. Lassila and H. K. Birnbaum: ‘Intergranular fracture of nickel: the effect of hydrogen-sulfur co-segregation’, Acta Metall., 1987, 35, (7), 1815–1822. doi: 10.1016/0001-6160(87)90127-1
  • A. Thompson and I. Bernstein: ‘The role of metallurgical variables in hydrogen-assisted environmental fracture’, Adv. Corros. Sci. Technol., 1979, 7, 53–175.
  • B. G. Pound: ‘A comparison of hydrogen ingress behavior in Alloys 625 and 716’, Scripta Metall. Mater., 1993, 29, (11), 1433–1438. doi: 10.1016/0956-716X(93)90332-M
  • L. Mansur, E. Lee, P. Maziasz and A. Rowcliffe: ‘Control of helium effects in irradiated materials based on theory and experiment’, J. Nucl. Mater., 1986, 141, 633–646. doi: 10.1016/0022-3115(86)90066-8
  • E. D. Ezugwu, Z. M. Wang and A. R. Machado: ‘The machinability of nickel-based alloys: a review’, J. Mater. Process. Technol., 1999, 86, (1–3), 1–16. doi: 10.1016/S0924-0136(98)00314-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.