272
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of the macrostructure evolution of a heavy steel ingot

, , , , &
Pages 574-582 | Received 07 Jul 2016, Accepted 06 Sep 2016, Published online: 26 Sep 2016

References

  • J. P. Gu and C. Beckermann: ‘Simulation of convection and macrosegregation in a large steel ingot’, Metall. Trans. A, 1999, 30, 1357–1366. doi: 10.1007/s11661-999-0284-5
  • C. Beckermann: ‘Modelling of macrosegregation: applications and future needs', Int. Mater. Rev., 2002, 47, 243–261. doi: 10.1179/095066002225006557
  • C. Ma, H. Shen, T. Huang and B. Liu: ‘Numerical simulation on macro-segregation in steel ingot during solidification’, Acta Metall. Sin., 2004, 17, (3), 288–294.
  • W. Li, H. Shen and B. Liu: ‘Numerical simulation of macrosegregation in steel ingots using a two-phase model’, Int. J. Miner. Metall. Mater., 2012, 19, (9), 787–794. doi: 10.1007/s12613-012-0629-8
  • Q. Du, D. Li and Y. Li: ‘Quantitative prediction of macrosegregation formation caused by natural convection during solidification of steel casting’, Acta Metall. Sin., 2000, 36, 1197–1200.
  • D. Liu, D. Li and B. Sang: ‘Numerical simulation of macrosegregation for an Fe-0.8 wt pct C Alloy’, J. Mater. Sci. Technol., 2009, 25, (4), 561–568.
  • M. Wu and A. Ludwig: ‘Influence of phase-transport phenomena on macrosegregation and structure formation during Solidification’, Adv. Eng. Mater., 2003, 5, 62–66. doi: 10.1002/adem.200390010
  • M. Wu and A. Ludwig: ‘Study of spatial phase separation during solidification and its impact on the formation of macrosegregations', Mater. Sci. Eng. A, 2005, 413, 192–199. doi: 10.1016/j.msea.2005.09.051
  • M. Rappaz and C. A. Gandin: ‘Probabilistic modeling of microstructure formation in solidification processes', Acta Metall. Mater., 1993, 41, 345–360. doi: 10.1016/0956-7151(93)90065-Z
  • C. A. Gandin and M. Rappaz: ‘A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes', Acta Metall. Mater., 1994, 42, 2233–2246. doi: 10.1016/0956-7151(94)90302-6
  • C. A. Gandin, J. L. Desbiolles, M. Rappaz and P. Thevoz: ‘A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures', Metall. Trans. A, 1999, 30, 3153–3165. doi: 10.1007/s11661-999-0226-2
  • S. G. R. Brown: ‘Simulation of diffusional composite growth using the cellular automaton finite difference (CAFD) method’, J. Mater. Sci., 1998, 33, 4769–4773. doi: 10.1023/A:1004405607979
  • X. Kang, Q. Du, D. Li and Y. Li: ‘Modeling of the solidification microstructure evolution by coupling cellular automaton with macro-transport model’, Acta Metall. Sin., 2004, 40, 452–456.
  • W. Kapturkiewicz, A. A. Burbelko, E. Fraś, M. Górny and D. Gurgul: ‘Computer modelling of ductile iron solidification using FDM and CA methods’, Journal of Achievements in Materials and Manufacturing Engineering, 2010, 43, (1), 310–323.
  • H. B. Dong and P. D. Lee: ‘Simulation of the columnar-to-equiaxed transition in directionally solidified Al–Cu alloys', Acta Mater., 2005, 53, 659–668. doi: 10.1016/j.actamat.2004.10.019
  • M. J. M. Krane, D. R. Johnson and S. Raghava: ‘The development of a cellular automaton-finite volume model for dendritic growth’, Appl. Math. Model., 2009, 33, 2234–2247. doi: 10.1016/j.apm.2008.06.007
  • A. Z. Lorbiecka and B. Šarler: ‘Simulation of dendritic growth with different orientation by using the point automata method’, Comput. Mater. Con (CMC), 2010, 18, 69–103.
  • H. Yin, S. D. Felicelli and L. Wang: ‘Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods', Acta Mater., 2011, 59, 3124–3136. doi: 10.1016/j.actamat.2011.01.052
  • M. F. Zhu and D. M. Stefanescu: ‘Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys', Acta Mater., 2007, 55, 1741–1755. doi: 10.1016/j.actamat.2006.10.037
  • J. Su: ‘Study on the microstructure of 2.25Cr–1Mo–0.5V steel ingot and its evolution during forging process', Master thesis, Taiyuan Science and Technology University, Taiyuan, China, 2011.
  • Y. Jin, H. An, P. Ma and H. Sun: ‘Preliminary study of solidification property in large steel ingot’, Heavy Cast. Forg., 2011, 1, 5–8.
  • L. Bai, H. Liu, Y. Zhang, X. Miao and X. Ruan: ‘Numerical simulation of the microstructure macrostructure of 22CrMoH billets and the effects of alloying elements', J. Univ. Sci. Technol. Beijing, 2011, 33, 1091–1098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.