695
Views
27
CrossRef citations to date
0
Altmetric
Review

Application and exploration of friction stir welding/processing in plastics industry

, , &
Pages 1145-1158 | Received 24 Nov 2016, Accepted 20 Dec 2016, Published online: 12 Jan 2017

References

  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci. 2008;53:980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • Gibson BT, Lammlein DH, Prater TJ, et al. Friction stir welding:process,automation,and control. J Manuf Process. 2014;16:56–73. doi: 10.1016/j.jmapro.2013.04.002
  • Liu HJ, Chen YC, Feng JC. Effect of heat treatment on tensile properties of friction stir welded joints of 2219-T6 aluminium alloy. Mater Sci Technol. 2006;22(2):237–241. doi: 10.1179/026708306X81513
  • Sarkari Khorrami M, Kazeminezhad M, Kokabi AH. Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding. Mater Sci Eng A. 2012;543:243–248. doi: 10.1016/j.msea.2012.02.082
  • Ji L, Zuo DW, Wang M. Force response characteristics and mechanical properties of friction stir welded AA2024 sheets. Mater Sci Technol. 2016;32(18):1892–1898. doi: 10.1080/02670836.2016.1149916
  • Liu C, Chen DL, Bholea S, et al. Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Mater Charact. 2009;60:370–376. doi: 10.1016/j.matchar.2008.10.009
  • Zhang X, Zhang H, Yan Z, et al. Fatigue fracture behaviour and thermographic analysis of friction stir-welded AZ31. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1226007.
  • Wang G, Yan Z, Zhang H, et al. Improved properties of friction stir-welded AZ31 magnesium alloy by post-weld heat treatment. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1243356.
  • Hwang YM, Fan PL, Lin CH. Experimental study on Friction Stir Welding of copper metals. J Mater Process Technol. 2010;210:1667–1672. doi: 10.1016/j.jmatprotec.2010.05.019
  • Forsström A, Luumi L, Bossuyt S, et al. Localisation of plastic deformation in friction stir and electron beam copper welds. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1243337.
  • Lakshminarayanan AK, Balasubramanian V. Assessment of fatigue life and crack growth resistance of friction stir welded AISI 409M ferritic stainless steel joints. Mater Sci Eng A. 2012;539:143–153. doi: 10.1016/j.msea.2012.01.071
  • De A, Bhadeshia HKDH, DebRoy T. Friction stir welding of mild steel: tool durability and steel microstructure. Mater Sci Technol. 2014;30(9):1050–1056. doi: 10.1179/1743284714Y.0000000534
  • Baker TN, McPherson NA. Properties and microstructure of double-sided friction stir-welded microalloyed steel. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1180752.
  • Song KJ, Dong ZB, Fang K, et al. Cellular automaton modelling of dynamic recrystallisation microstructure evolution during friction stir welding of titanium alloy. Mater Sci Technol. 2014;30(6):700–711. doi: 10.1179/1743284713Y.0000000389
  • Nasresfahani AR, Soltanipur AR, Farmanesh K, et al. Effects of tool wear on friction stir welded joints of Ti-6Al-4V alloy. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1237065.
  • Sato YS, Nagahama Y, Mironov S, et al. Microstructural studies of friction stir welded Zircaloy-4. Scr Mater. 2012;67:241–244. doi: 10.1016/j.scriptamat.2012.04.029
  • Lin YC, Liu JJ, Lin BY, et al. Effects of process parameters on strength of Mg alloy AZ61 friction stir spot welds. Mater Des. 2012;35:350–357. doi: 10.1016/j.matdes.2011.08.050
  • Venukumar S, Muthukumaran S, Yalagi SG, et al. Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets. Int J Fatigue. 2014;61:93–100. doi: 10.1016/j.ijfatigue.2013.12.009
  • Chen YC, Komazaki T, Tsumura T, et al. Role of zinc coat in friction stir lap welding Al and zinc coated steel. Mater Sci Technol. 2008;24(1):33–39. doi: 10.1179/174328407X248505
  • Fadi AF. A preliminary study on the feasibility of friction stir back extrusion. Scr Mater. 2012;66:615–618. doi: 10.1016/j.scriptamat.2012.01.059
  • Zhao YH, Lin SB, Qu FX, et al. Influence of pin geometry on material flow in friction stir welding process. Mater Sci Technol. 2006;22(1):45–50. doi: 10.1179/174328406X78424
  • Yadav D, Bauri R. Microstructural characterisation of friction stir processed aluminium. Mater Sci Technol. 2011;27(7):1163–1169. doi: 10.1179/1743284711Y.0000000006
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Reactive friction stir processing of AA 5052-TiO2 nanocomposite: process-microstructure-mechanical characteristics. Mater Sci Technol. 2015;31(4):426–435. doi: 10.1179/1743284714Y.0000000573
  • Stokes VK. Joining methods for plastics and plastic composites: an overview. Polym Eng Sci. 1989;29(19):1310–1324. doi: 10.1002/pen.760291903
  • Troughton MJ. Handbook of plastics joining. 2nd ed. Norwich (NY): William Andrew Inc; 2008.
  • Strand SR. Joining plastics-can friction stir welding compete. Conf. on Electrical Insulation Conference & Electrical Manufacturing & Coil Wind Technology Congerence; 2003. p. 321–326.
  • Clark J. Friction stir welding of polymeric materials. Utah: Brigham Young University; 1999.
  • Strand SR. Effects of friction stir welding on polymer microstructure. Utah: Brigham Young University; 2004.
  • Jaiganesh V, Maruthu B, Gopinath E. Optimization of process parameters on friction stir welding of high density polypropylene plate. Procedia Eng. 2014;97:1957–1965. doi: 10.1016/j.proeng.2014.12.350
  • Hoseinlaghab S, Mirjavadi SS, Sadeghian N, et al. Influences of welding parameters on the quality and creep properties of friction stir welded polyethylene plates. Mater Des. 2015;67:369–378. doi: 10.1016/j.matdes.2014.11.039
  • Sadeghian N, Besharati Givi MK. Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater Des. 2015;67:145–153. doi: 10.1016/j.matdes.2014.11.032
  • Saeidi M, Arab NB, Ghasemi FA. The effect of pin geometry on mechanical properties of PP composite Friction Stir Welds. IIW Int Congress Welding Joining, Iran; 2009.
  • Payganeh GH, Mostafa Arab NB, Dadgar Asl Y, et al. Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int J Phys Sci. 2011;6(19):4595–4601.
  • Panneerselvam K, Lenin K. Investigation on effect of tool forces and joints defects during FSW of polypropylene plate. Procedia Eng. 2012;38:3927–3940. doi: 10.1016/j.proeng.2012.06.450
  • Panneerselvam K, Lenin K. Joining of Nylon 6 plate by friction stir welding process using threaded pin profile. Mater Des. 2014;53:302–307. doi: 10.1016/j.matdes.2013.07.017
  • Scialpi A, Troughton M, Andrews S, et al. Friction stir welding for plastics. Weld Int. 2009;23(11):846–855. doi: 10.1080/09507110902843271
  • ASM International. Reciprocating friction stir welding joins thermoplastics. Adv Mater Process. 158.
  • Nelson TW, Sorensen CD, Johns C, et al. Joining of thermoplastics with friction stir welding. Conf. on 2nd International Symposium on Friction Stir Welding. Gothenburg, Sweden; 2000.
  • Nelson TW. Friction stir welding of polymeric materials. US Patent 6811632 B2, 2004.
  • Sorensen CD, Nelson TW, Strand SR, et al. Joining of thermoplastics with friction stir welding. Conf. on Proceedings of ANTEC 2001, Society of Plastics Engineers. Dallas, USA; 2001. p. 1031–1035.
  • Strand SR, Sorensen CD, Nelson TW. Effects of friction stir welding on polymer microstructure. ANTEC, 2003; p. 1078–1082.
  • Scialpi A, Troughton M, Andrews S, et al. In-line reciprocating friction stir welding of plastics. Joining Plastics/Fügen von Kunststoffen Magazine. 2007; p. 1.
  • Rezgui MA, Ayadi M, Cherouat A, et al. Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. EPJ Web of Conferences, 2010; 6, 07003.
  • Rezgui MA, Trabelsi AC, Ayadi M, et al. Optimization of friction stir welding process of high density polyethylene. Int J Prod Qual Eng. 2011;2:55–61.
  • Kiss Z, Czigány T. Applicability of friction stir welding polymeric materials. Period Polytech Mech Eng. 2007;51(1):15–18. doi: 10.3311/pp.me.2007-1.02
  • Kiss Z, Czigány T. Microscopic analysis of the morphology of seams in friction stir welded polypropylene. eXPRESS Polym Lett. 2012;6(1):54–62. doi: 10.3144/expresspolymlett.2012.6
  • Kiss Z, Czigány T. Effect of welding parameters on the heat affected zone and the mechanical properties of friction stir welded poly(ethylene-terephthalate-glycol). J Appl Polym Sci. 2012;125:2231–2238. doi: 10.1002/app.36440
  • Rahbarpour R, Azdast T, Rahbarpour H, et al. Feasibility study of friction stir welding of wood-plastic composites. Sci Technol Weld Join. 2014;19(8):673–681. doi: 10.1179/1362171814Y.0000000233
  • Mendes N, Loureiro A, Martins C, et al. Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des. 2014;58:457–464. doi: 10.1016/j.matdes.2014.02.036
  • Mendes N, Loureiro A, Martins C, et al. Morphology and strength of acrylonitrile butadiene styrene welds performed by robotic friction stir welding. Mater Des. 2014;64:81–90. doi: 10.1016/j.matdes.2014.07.047
  • Mendes N, Neto P, Simão MA, et al. A novel friction stir welding robotic platform: welding polymeric materials. Int J Adv Manuf Technol. 2016;85(1):37–46. doi: 10.1007/s00170-014-6024-z
  • Mostafapour A, Azarsa E. A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. Int J Phys Sci. 2012;7(4):647–654.
  • Azarsa E, Mostafapour A. Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J Manuf Processes. 2014;16:149–155. doi: 10.1016/j.jmapro.2013.12.003
  • Azarsa E, Mostafapour Asl A, Tavakolkhah V. Effect of process parameters and tool coating on mechanical properties and microstructure of heat assisted friction stir welded polyethylene sheets. Adv Mater Res. 2012;445:765–770. doi: 10.4028/www.scientific.net/AMR.445.765
  • Bagheri A, Azdast T, Doniavi A. An experimental study on mechanical properties of friction stir welded ABS sheets. Mater Des. 2013;43:402–409. doi: 10.1016/j.matdes.2012.06.059
  • Eslami S, Ramosa T, Tavaresa PJ, et al. Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Eng. 2015;114:199–207. doi: 10.1016/j.proeng.2015.08.059
  • Eslami S, Ramos T, Tavares PJ, et al. Shoulder design developments for FSW lap joints of dissimilar polymers. J Manuf Processes. 2015;20:15–23. doi: 10.1016/j.jmapro.2015.09.013
  • Pirizadeh M, Azdast T, Ahmadi SR, et al. Friction stir welding of thermoplastics using a newly designed tool. Mater Des. 2014;54:342–347. doi: 10.1016/j.matdes.2013.08.053
  • Barmouz M, Shahi P. Advances in friction-stir welding and processing. Cambridge: Woodhead Publishing; 2014.
  • Eslami S, Tavares PJ, Moreira PMGP. Friction stir welding tooling for polymers: review and prospects. Int J Adv Manuf Technol. 2016. doi: 10.1007/s00170-016-9205-0.
  • Squeo EA, Quadrini F. Friction stir welding of polyethylene sheets. The Annals of DUNĂREA DE JOS University of Galati Fascicle V. Technologies in Machine Building. 2009; p. 241–246.
  • Aydin M. Effects of welding parameters and pre-heating on the friction stir welding of UHMW-Polyethylene. Polym Plast Technol. 2010;49:595–601. doi: 10.1080/03602551003664503
  • Vijendra B, Sharma A. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J Manuf Processes. 2015;20:234–244. doi: 10.1016/j.jmapro.2015.07.005
  • Chai F, Zhang DT, Li YY. Effect of rotation speeds on microstructures and tensile properties of submerged friction stir processed AZ31 magnesium alloy. Mater Res Innov. 2016. doi: 10.1179/1432891714Z.000000000673.
  • Gao JC, Shen YF, Zhang JQ, et al. Submerged friction stir weld of Polyethylene sheets. J Appl Polym Sci. 2014;131(22):1–8.
  • Gao JC, Shen YF, Xu HS. Investigations for the mechanical, macro-, and microstructural analyses of dissimilar submerged friction stir welding of acrylonitrile butadiene styrene and polycarbonate sheets. P I Mech Eng-B J Eng. 2016;230(7):1213–1220.
  • Gao JC, Li C, Shilpakar U, et al. Improvements of mechanical properties in dissimilar joints of HDPE and ABS via carbon nanotubes during friction stir welding process. Mater Des. 2015;86:289–296.
  • Gao JC, Li C, Shilpakar U, et al. Microstructure and tensile properties of dissimilar submerged friction stir welds between HDPE and ABS sheets. Int J Adv Manuf Technol. 2016. doi: 10.1007/s00170-016-8539-y.
  • Baker TN, McPherson NA. Properties and microstructure of double-sided friction stir-welded microalloyed steel. Mater Sci Technol. 2016. doi: 10.1080/02670836.2016.1180752.
  • Arici A, Sinmaz T. Effects of double passes of the tool on friction stir welding of polyethylene. J Mater Sci. 2005;40:3313–3316. doi: 10.1007/s10853-005-2709-x
  • Arici A, Selale S. Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Sci Technol Weld Join. 2007;12:536–539. doi: 10.1179/174329307X173706
  • Saeedy S, Besharati Givi MK. Experimental investigation of double side friction stir welding (FSW) on high density polyethylene blank. Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis; 2010 July 12–14, Istanbul, Turkey.
  • Attallah MM, Salem HG. Influence of process parameters on superplasticity of friction stir processed nugget in high strength Al- Cu-Li alloy. Mater Sci Technol. 2004;20:1370–1376. doi: 10.1179/026708304X3962
  • Lee WB, Yeon YM, Jung SB. Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Mater Sci Technol. 2003;19:1512–1517.
  • Mahmoud TS, Gaafer AM, Khalifa TA. Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy. Mater Sci Technol. 2008;24(5):553–559. doi: 10.1179/174328408X294116
  • Saeedy S, Besharati Givi MK. Investigation of the effects of critical process parameters of friction stir welding of polyethylene. P I Mech Eng-B J Eng. 2011;1–6.
  • Saeedy S, Besharati Givi MK. Experimental application of friction stir welding (FSW) on thermo plastic medium density polyethylene blanks. Proceedings of the ASME 10th Conference on Engineering Systems Design and Analysis; 2010 July 12–14, Istanbul, Turkey,.
  • Bozkurt Y. The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater Des. 2012;35:440–445. doi: 10.1016/j.matdes.2011.09.008
  • Panneerselvam K, Lenin K. Effects and defects of the polypropylene plate for different parameters in friction stir welding process. Int J Res Eng Technol. 2013;2(2):143–152. doi: 10.15623/ijret.2013.0202010
  • Besharati Givi MK, Saeedy S. Experimental study on the effects of rotational speed and attack angle on high density polyethylene (HDPE) friction stir welded butt joints. Adv Mater Res. 2011;189:3583–3587.
  • Simões F, Rodrigues DM. Material flow and thermo-mechanical conditions during Friction Stir Welding of polymers: literature review, experimental results and empirical analysis. Mater Des. 2014;59:344–351. doi: 10.1016/j.matdes.2013.12.038
  • Ahmadi H, Mostafa Arab NB, Ashenai Ghasemi F. Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method. J Mech Sci Technol. 2014;28(1):279–284. doi: 10.1007/s12206-013-0966-1
  • Amancio-Filho ST, dos Santos JF. Joining of polymers and polymer-metal hybrid structures: recent developments and trends. Polym Eng Sci. 2009;49(8):1461–1476. doi: 10.1002/pen.21424
  • Liu FC, Liao J, Nakata K. Joining of metal to plastic using friction lap welding. Mater Des. 2014;54:236–244. doi: 10.1016/j.matdes.2013.08.056
  • Ratanathavorn W, Melander A. Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci Technol Weld Join. 2015;20(3):222–228. doi: 10.1179/1362171814Y.0000000276
  • Barmouz M, Seyfi J, Besharati Givi MK, et al. A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng A. 2011;528:3003–3006. doi: 10.1016/j.msea.2010.12.083
  • Alyali S, Mostafapour A, Azarsa E. Fabrication of PP/Al2O3 surface nanocomposites via novel friction stir processing approach. Int J Adv Eng and Technol. 2012;3:598–605.
  • Azarsa E, Mostafapour A. On the feasibility of producing polymer–metal composites via novel variant of friction stir processing. J Manuf Processes. 2013;15:682–688. doi: 10.1016/j.jmapro.2013.08.007
  • Farshbaf Zinati R, Razfar MR, Nazockdast H. Numerical and experimental investigation of FSP of PA 6/MWCNT composite. J Mater Process Technol. 2014;214:2300–2315. doi: 10.1016/j.jmatprotec.2014.04.026
  • Farshbaf Zinati R, Razfar MR. Finite element simulation and experimental investigation of friction stir processing of Polyamide 6. P I Mech Eng-B J Eng. 2015;229(12):2205–2215.
  • Ebnonnasir A, Karimzadeh F, Enayati MH. Novel artificial neural network model for evaluating hardness of stir zone of submerge friction stir processed Al 6061-T6 plate. Mater Sci Technol. 2011;27(6):990–995. doi: 10.1179/174328409X425290
  • Gao JC, Shen YF, Li C. Fabrication of high-density polyethylene/multiwalled carbon nanotube composites via submerged friction stir processing: Evaluation of morphological, mechanical, and thermal behavior. J Thermoplast Compos. 2015. doi: 10.1177/0892705715598360.
  • Gao JC, Li C, Shen YF. Investigations into the mechanical, morphological and thermal analysis of friction stir processing of high-density polyethylene composites. P I Mech Eng-B J Eng. 2016. doi: 10.1177/0954405416666892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.