2,713
Views
30
CrossRef citations to date
0
Altmetric
Articles

Effects of ultrasonic impact treatment on weld microstructure, hardness, and residual stress

, , ORCID Icon, &
Pages 1601-1609 | Received 01 Jan 2017, Accepted 21 Feb 2017, Published online: 09 Mar 2017

References

  • Pavlyk V, Dilthey U. Simulation of weld solidification microstructure and its coupling to the macroscopic heat and fluid flow modelling. Model Simul Mater Sci Eng. 2004;12(1):S33–S45. doi: 10.1088/0965-0393/12/1/S03
  • Kosekia T, Inoue H, Fukuda Y, et al. Numerical simulation of equiaxed grain formation in weld solidification. Sci Technol Adv Mater. 2003;4(2):183–195. doi: 10.1016/S1468-6996(03)00026-3
  • Hyde TH, Sun W, Yaghi AH, et al. Some issues on structural integrity analysis of P91 welds in power plants subjected to high temperature creep. Fatigue Fract Eng Mater Struct. 2009;32(11):926–935. doi: 10.1111/j.1460-2695.2009.01397.x
  • Lei X, Niu J, Zhang J, et al. Failure analysis of weld cracking in a thick-walled 2.25Cr-1Mo steel pressure vessel. J Mater Eng Perform. 2014;23(4):1231–1239. doi: 10.1007/s11665-014-0893-z
  • Kou S, Le Y. Nucleation mechanism and grain refining of weld metal. Weld. J. 1986;65(12):305s–313s.
  • Tewari SP. Influence of vibration on grain size and degree of grain refinement in mild steel weldment. J Mater Res. 1993;8(9):2228–2230. doi: 10.1557/JMR.1993.2228
  • Cui Y, Xu C, Han Q. Microstructure improvement in weld metal using ultrasonic vibrations. Adv Eng Mater. 2007;9(3):161–163. doi: 10.1002/adem.200600228
  • Pearce BP, Kerr HW. Grain refinement in magnetically stirred GTA welds of aluminum alloys. Metall Trans B. 1981;12(3):479–486. doi: 10.1007/BF02654317
  • Wells ME, Lukens WE. Effect of forced gas cooling on GTA weld pools. Weld J. 1986;65(12):314s–321s.
  • Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 2016;106:144–154. doi: 10.1016/j.actamat.2016.01.016
  • Statnikov ES. Guide for application of ultrasonic impact treatment for improving fatigue life of welded structures. International Institute of Welding (IIW), IIW/IIS-Document XIII-1757-99, 1999.
  • Kirkhope KJ, Bell R, Caron L, et al. Weld detail fatigue life improvement techniques. Part-1: Review. Mar Struct. 1999;12(6):447–474. doi: 10.1016/S0951-8339(99)00013-1
  • Abdullah A, Malaki M, Eskandari A. Strength enhancement of the welded structures by ultrasonic peening. Mater Des. 2012;38:7–18. doi: 10.1016/j.matdes.2012.01.040
  • Statnikov ES, Korolkov OV, Vityazev VN. Physics and mechanism of ultrasonic impact. Ultrasonics. 2006;44:e533–e538. doi: 10.1016/j.ultras.2006.05.119
  • Kudryavtsev Y, Kleiman J, Lobanov L. Fatigue life improvement of welded elements by ultrasonic peening. International Institute of Welding (IIW), IIW Document XIII-2010-04, 2004.
  • Gao H, Dutta RK, Huizenga RM, et al. Stress relaxation due to ultrasonic impact treatment on multi-pass welds. Sci Technol Weld Join. 2014;19(6):505–513. doi: 10.1179/1362171814Y.0000000219
  • Mordyuk BN, Prokopenko GI, Vasylyev MA, et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Mater Sci Eng A. 2007;458(1–2):253–261. doi: 10.1016/j.msea.2006.12.049
  • Mordyuk BN, Milman YV, Iefimov MO, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surf Coat Technol. 2008;202(19):4875–4883. doi: 10.1016/j.surfcoat.2008.04.080
  • Turski M, Clitheroe S, Evans AD, et al. Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments. Appl Phys A. 2010;99(3):549–556. doi: 10.1007/s00339-010-5672-6
  • Prime MB. Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater Technol. 2001;123(2):162–168. doi: 10.1115/1.1345526
  • Pagliaro P, Prime MB, Swenson H, et al. Measuring multiple residual-stress components using the contour method and multiple cuts. Exp Mech. 2010;50(2):187–194. doi: 10.1007/s11340-009-9280-3
  • Liu C, Zhu HY, Dong CL. Internal residual stress measurement on inertia friction welding of nickel-based superalloy. Sci Technol Weld Join. 2014;19(5):408–415. doi: 10.1179/1362171814Y.0000000206
  • Nawrocki JG, Dupont JN, Robino CV, et al. The mechanism of stress-relief cracking in a ferritic alloy steel. Weld J. 2003;82(2):25s–35s.
  • Paddea S, Francis JA, Paradowska AM, et al. Residual stress distributions in a P91 steel-pipe girth weld before and after post weld heat treatment. Mater Sci Eng A. 2012;534:663–672. doi: 10.1016/j.msea.2011.12.024
  • Hatamleh O, DeWald A. An investigation of the peening effects on the residual stresses in friction stir welded 2195 and 7075 aluminum alloy joints. J Mater Process Technol. 2009;209(10):4822–4829. doi: 10.1016/j.jmatprotec.2008.12.010
  • Richter-Trummer V, Suzano E, Beltrão M, et al. Influence of the FSW clamping force on the final distortion and residual stress field. Mater Sci Eng A. 2012;538:81–88. doi: 10.1016/j.msea.2012.01.016
  • Liu C, Ge QL, Chen DJ, et al. Residual stress variation in a thick welded joint after ultrasonic impact treatment. Sci Technol Weld Join 2016;21(8):624–631. doi: 10.1080/13621718.2016.1149932
  • Cheng X, Fisher JW, Prask HJ, et al. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures. Int J Fatigue. 2003;25(9–11):1259–1269. doi: 10.1016/j.ijfatigue.2003.08.020