2,417
Views
27
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical Assessment 25: Friction stir processing, potential and problems

ORCID Icon
Pages 1139-1144 | Received 21 Feb 2017, Accepted 23 Feb 2017, Published online: 15 Mar 2017

References

  • Mishra RS, Mahoney MW, McFadden SX, et al. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater. 1999;42(2):163–168.
  • Mahoney MW, Bingel WH, Sharma SR, et al. Microstructural modification and resultant properties of friction stir processed cast NiAl bronze. Mater Sci Forum. 2003;426–432:2843–2848.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties. Mater Sci Eng A. 2016;666:225–237.
  • Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, et al. Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A. 2013;585:222–232.
  • Berbon PB, Bingel WH, Mishra RS, et al. Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr Mater. 2001;44(1):61–66.
  • Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A. 2008;39(3):642–658.
  • Morishige T, Tsujikawa M, Hino M, et al. Microstructural modification of cast Mg alloys by friction stir processing. Int J Cast Metals Res. 2008;21(1–4):109–113.
  • Ma ZY, Pilchak AL, Juhas MC, et al. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scr Mater. 2008;58(5):361–366.
  • Du X, Zhang E, Wu B. Achieving ultra-fine grains in AZ61 Mg alloy by friction stir processing. Int J Mater Res. 2008;99(12):1375–1378.
  • Chang CI, Du XH, Huang JC. Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scr Mater. 2008;59(3):356–359.
  • Morishige T, Hirata T, Tsujikawa M, et al. Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Mater Lett. 2010;64(17):1905–1908.
  • Robson JD, Cui S, Chen ZW. Incipient melting during friction stir processing of AZ91 magnesium castings. Mater Sci Eng A. 2010;527(27–28):7299–7304.
  • Hannard F, Castin S, Maire E, et al. Ductilization of aluminium alloy 6056 by friction stir processing. Acta Mater.
  • Kumar N, Mishra RS, Huskamp CS, et al. The effect of friction stir processing on the microstructure and mechanical properties of equal channel angular pressed 5052Al alloy sheet. J Mater Sci. 2011;46(16):5527–5533.
  • Khodabakhshi F, Kazeminezhad M. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel. Mater Des. 2011;32(6):3280–3286.
  • Khorrami MS, Kazeminezhad M, Kokabi AH. Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding. Mater Sci Eng A. 2012;543:243–248.
  • El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Technol. 2012;212(5):1157–1168.
  • Yazdipour A, Shafiei MA, Dehghani K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A. 2009;527(1–2):192–197.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A. 2015;620:471–482.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214.
  • Mehranfar M, Dehghani K. Producing nanostructured super-austenitic steels by friction stir processing. Mater Sci Eng A. 2011;528(9):3404–3408.
  • Xue P, Xiao BL, Ma ZY. Achieving large-area bulk ultrafine grained Cu via submerged multiple-pass friction stir processing. J Mater Sci Technol. 2013;29(12):1111–1115.
  • Chabok A, Dehghani K. Formation of nanograin in IF steels by friction stir processing. Mater Sci Eng A. 2010;528(1):309–313.
  • Anvari SR, Karimzadeh F, Enayati MH. A novel route for development of Al–Cr–O surface nano-composite by friction stir processing. J Alloys Compd. 2013;562:48–55.
  • Hodder KJ, Izadi H, McDonald AG, et al. Fabrication of aluminum–alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing. Mater Sci Eng A. 2012;556:114–121.
  • Luo P, Xie ZX, Dong SJ, et al. Defects modification of TiB2-TiC composite phase coating resistance spot welding electrode via friction stir processing. Mater Trans. 2014;55(6):917–920.
  • Jiang Z, Liu X. Ni–Cr–Al coating layer modified by friction stir processing – analysis of microstructure and element diffusion. Mater Trans. 2015:616–619.
  • Morisada Y, Fujii H, Mizuno T, et al. Modification of thermally sprayed cemented carbide layer by friction stir processing. Surf Coat Technol. 2010;204(15):2459–2464.
  • Rule J, Rodelas J, Lippold J. Minerals, metals and materials society/AIME, 420 commonwealth Dr., P.O. Box 430 Warrendale PA 15086 United States. [np]. Feb 2011 (Feb 2011).
  • Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Process Technol. 2013;213(11):1900–1907.
  • Węglowski MSt. Friction stir processing technology – new opportunities. Weld Int. 2014;28(8):583–592.
  • Morisada Y, Fujii H, Mizuno T, et al. Nanostructured tool steel fabricated by combination of laser melting and friction stir processing. Mater Sci Eng A. 2009;505(1–2):157–162.
  • Du ZL, Tan MJ, Guo JF, et al. Dispersion of CNTs in selective laser melting printed AlSi10Mg composites via friction stir processing. Mater Sci Forum. 2017;879:1915–1920.
  • Mukherjee S, Ghosh AK. Friction stir processing of direct metal deposited copper–nickel 70/30. Mater Sci Eng A. 2011;528(9):3289–3294.
  • Santos TG, Lopes N, Machado M, et al. Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current. J Mater Process Technol. 2015;216:375–380.
  • Sharma V, Prakash U, Kumar BVM. Surface composites by friction stir processing: A review. J Mater Process Technol. 2015;224:117–134.
  • Chen C-F, Kao P-W, Chang L, et al. Mechanical properties of nanometric Al2O3 particulate-reinforced Al–Al11Ce3 composites produced by friction stir processing. Mater Trans. 2010;51(5):933–938.
  • Yang M, Xu C, Wu C, et al. Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing. J Mater Sc. 2010;45(16):4431–4438.
  • Srinivasan C, Karunanithi M. Fabrication of surface level Cu/SiCp nanocomposites by friction stir processing route. J Nanotechnol. 2015;2015:1–10.
  • Salehi M, Farnoush H, Heydarian A, et al. Improvement of mechanical properties in the functionally graded aluminum matrix nanocomposites fabricated via a novel multistep friction stir processing. Metal Mater Trans B. 2015;46(1):20–29.
  • Hosseini SA, Ranjbar K, Dehmolaei R, et al. Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. J Alloys Compd. 2015;622:725–733.
  • Benjamin JS. Dispersion strengthened superalloys by mechanical alloying. Metal Trans. 1970;1(10):2943–2951.
  • Lim DK, Shibayanagi T, Gerlich AP. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A. 2009;507(12):194–199.
  • Izadi H, Gerlich AP. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon. 2012;50(12):4744–4749.
  • Shahraki S, Khorasani S, Abdi Behnagh R, et al. Producing of AA5083/ZrO2 nanocomposite by friction stir processing (FSP). Metal Mater Trans B. 2013;44(6):1546–1553.
  • Bauri R, Yadav D, Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng A. 2011;528(13–14):4732–4739.
  • Zhang Q, Xiao BL, Wang QZ, et al. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al–TiO2 system. Mater Lett. 2011;65(13):2070–2072.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: in-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Mater Charact. 2015;108:102–114.
  • Rajan HBM, Dinaharan I, Ramabalan S, et al. Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite. J Alloys Compd. 2016;657:250–260.
  • Ji YS, Hidetoshi F, Nakata K, et al. Friction stir welding of Zr55Cu30Ni5Al10 bulk metallic glass. Preprints Natl Meet JWS. 2008;2008f:401–401.
  • Ni DR, Wang JJ, Zhou ZN, et al. 'Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J Alloys Compd. 2014;586:368–374.
  • Arab SM, Karimi S, Jahromi SAJ, et al. Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Mater Sci Eng A. 2015;632:50–57.
  • Ajay Kumar P, Raj R, Kailas SV. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater Des. 2015;85:626–634.
  • Avettand-Fènoël MN, Simar A, Shabadi R, et al. Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing. Mater Des. 2014;60:343–357.
  • Xie Z, Luo P, Dong SJ, et al. Improved properties of TiC coating deposited on copper alloy via friction stir processing. Mater Trans. 2014;55(11):1639–1642.
  • Barmouz M, Seyfi J, Kazem Besharati Givi M, et al. A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng A. 2011;528(6):3003–3006.
  • Khodabakhshi F, Haghshenas M, Sahraeinejad S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater Charact. 2014;98:73–82.
  • Khodabakhshi F, Haghshenas M, Chen J, et al. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci Technol Weld Join. 2017;22:182–190.
  • Huang Y, Wang T, Guo W, et al. Microstructure and surface mechanical property of AZ31 Mg/SiCp surface composite fabricated by direct friction stir processing. Mater Des. 2014;59:274–278.
  • Asadi P, Faraji G, Masoumi A, et al. Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes. Metal Mater Trans A. 2011;42(9):2820–2832.
  • Ghasemi-Kahrizsangi A, Kashani-Bozorg SF. Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Tech. 2012;209:15–22.
  • Feng AH, Xiao BL, Ma ZY, et al. Effect of friction stir processing procedures on microstructure and mechanical properties of Mg–Al–Zn casting. Metal Mater Trans A. 2009;40(10):2447–2456.
  • Kadkhodapour J, Butz A, Ziaei Rad S. Mechanisms of void formation during tensile testing in a commercial, dual-phase steel. Acta Mater. 2011;59(7):2575–2588.
  • Guo JF, Liu J, Sun CN, et al. Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng A. 2014;602:143–149.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater Sci Eng A. 2015;626:458–466.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol. 2015;31(4):426–435.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater Sci Eng A. 2015;642:215–229.
  • Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev. 1994;39(1):1–23.
  • Ma ZY, Mishra RS, Mahoney MW. Superplasticity in cast A356 induced via friction stir processing. Scr Mater. 2004;50(7):931–935.
  • Hayashi J, Menon S, Su J, et al. CHAPTER 3: material processing methods to enhance superplasticity-friction stir processing (FSP) of as-cast AA5083 for grain refinement and superplasticity. Key Eng Mater. 2010;433:135.
  • Smith CB, Mohan A, Mishra RS, et al. Friction stir processing of commercial grade marine alloys to enable superplastic forming. Key Eng Mat. 2010;433:141–151.
  • Hu CM, Lai CM, Kao PW, et al. Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing. Mater Charact. 2010;61(11):1043–1053.
  • Ma ZY, Mishra RS, Mahoney MW. Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 2002;50(17):4419–4430.
  • Alidokht SA, Abdollah-zadeh A, Soleymani S, et al. Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Mater Des. 2011;32(5):2727–2733.
  • Rejil CM, Dinaharan I, Vijay SJ, et al. Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater Sci Eng A. 2012;552:336–344.
  • Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties. Mater Sci Eng A. 2016;660:84–96.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear. 2010;268(9–10):1111–1121.
  • Prado RA, Murr LE, Soto KF, et al. Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC. Mater Sci Eng A. 2003;349(1–2):156–165.
  • Legendre F, Poissonnet S, Bonnaillie P, et al. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy. J Nucl Mater. 2009;386–388:537–539.
  • Bhadeshia HKDH. Recrystallisation of practical mechanically alloyed iron-base and nickel-base superalloys. Mater Sci Eng A. 1997;223(1):64–77.
  • Murray DL. Friction stir processing of nickel aluminum propeller bronze in comparison to fusion welds. PhD Thesis, Naval Postgraduate School; 2005.
  • Hardwick N. Use of additive friction stir in mg alloys (powder and solid). In 27th Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition; 2016 May 23–26. Asm (2016, May).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.