236
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Ionically conducting oxide composite thin films and heterostructures

ORCID Icon
Pages 1728-1736 | Received 02 Dec 2016, Accepted 03 Apr 2017, Published online: 23 Apr 2017

References

  • Guo X, Maier J. Ionically conducting two-dimensional heterostructures. Adv Mater. 2009;21(25–26):2619–2631.
  • Tuller HL, Litzelman SJ, Jung W. Micro-ionics: next generation power sources. Phys Chem Chem Phys. 2009;11(17):3023–3034.
  • Kilner JA. Ionic conductors: feel the strain. Nat Mater. 2008;7(11):838–839.
  • Stambouli AB, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustainable Energy Rev. 2002;6(5):433–455.
  • Ormerod RM. Solid oxide fuel cells. Chem Soc Rev. 2003;32(1):17–28.
  • Hwang HY, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces. Nat Mater. 2012;11(2):103–113.
  • Zhang W, Ramesh R, MacManus-Driscoll JL, et al. Multifunctional, self-assembled oxide nanocomposite thin films and devices. MRS Bull. 2015;40(09):736–745.
  • McDonald JR. Impedance spectroscopy. New York (NY): Wiley; 1987.
  • Zhao Y, Xu Z, Xia C, et al. Oxide ion and proton conduction in doped ceria–carbonate composite materials. Int J Hydrogen Energy. 2013;38(3):1553–1559.
  • Zhao Y, Xia C, Xu Z, et al. Validation of H+/O2− conduction in doped ceria–carbonate composite material using an electrochemical pumping method. Int J Hydrogen Energy. 2012;37(15):11378–11382.
  • Maier J. Defect chemistry and ionic conductivity in thin films. Solid State Ionics. 1987;23(1–2):59–67.
  • Heitjans P, Indris S. Diffusion and ionic conduction in nanocrystalline ceramics. J Phys: Condensed Matter. 2003;15(30):R1257.
  • Cho S, Yun C, Tappertzhofen S, et al. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nat Commun. 2016;7:12373.
  • Yang SM, Lee S, Jian J, et al. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat Commun. 2015;6:8588.
  • Minh NQ. Ceramic fuel cells. J Am Ceram Soc. 1993;76(3):563–588.
  • Mengucci P, Barucca G, Caricato AP, et al. Effects of annealing on the microstructure of yttria-stabilised zirconia thin films deposited by laser ablation. Thin Solid Films. 2005;478(1–2):125–131.
  • Kosacki I, Rouleau CM, Becher PF, et al. Surface/ interface-related conductivity in nanometer thick YSZ films. Electrochem Solid-State Lett. 2004;7(12):A459–A461.
  • Kosacki I, Rouleau CM, Becher PF, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics. 2005;176(13):1319–1326.
  • Korte C, Schichtel N, Hesse D, et al. Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatsh Chem – Chem Mon. 2009;140(9):1069–1080.
  • Sillassen M, Eklund P, Pryds N, et al. Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv Funct Mater. 2010;20(13):2071–2076.
  • Huang H, Nakamura M, Su P, et al. High-performance ultrathin solid oxide fuel cells for low-temperature operation. J Electrochem Soc. 2007;154(1):B20–B24.
  • De Souza RA, Pietrowski MJ, Anselmi-Tamburini U, et al. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. Phys Chem Chem Phys. 2008;10(15):2067–2072.
  • Guo X, Maier J. Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc. 2001;148(3):E121–E126.
  • Kudo T, Obayashi H. Oxygen Ion Conduction of the Fluorite-Type Ce1− x Ln x O 2− x/2 (Ln= Lanthanoid Element). J Electrochem Soc. 1975;122(1):142–147.
  • Tschöpe A. Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics. 2001;139(3–4):267–280.
  • Chen L, Chen C, Chen X, et al. Electrical properties of a highly oriented, textured thin film of the ionic conductor Gd: CeO2-δ on (001) MgO. Appl Phys Lett. 2003;83(23):4737–4739.
  • Huang H, Gür TM, Saito Y, et al. High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films. Appl Phys Lett. 2006;89(14):143107.
  • Suzuki T, Kosacki I, Anderson HU. Microstructure– electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ionics, 2002;151(1):111–121.
  • Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science. 2008;321(5889):676–680.
  • Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Tailoring disorder and dimensionality: strategies for improved solid oxide fuel cell electrolytes. ChemPhysChem. 2009;10(7):1003–1011.
  • Guo X. Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science. 2009;324(5926):465–465.
  • Schichtel N, Korte C, Hesse D, et al. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Phys Chem Chem Phys. 2009;11(17):3043–3048.
  • Cavallaro A, Burriel M, Roqueta J, et al. Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics. 2010;181(13–14):592–601.
  • Korte C, Peters A, Janek J, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys Chem Chem Phys. 2008;10(31):4623–4635.
  • Peters A, Korte C, Hesse D, et al. Ionic conductivity and activation energy for oxygen ion transport in superlattices—the multilayer system CSZ (ZrO 2+ CaO)/Al 2 O 3. Solid State Ionics. 2007:178(1):67–76.
  • Sata N, Eberman K, Eberl K, et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408(6815):946–949.
  • Azad S, Marina OA, Wang CM, et al. Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl Phys Lett. 2005;86(13):131906.
  • Sanna S, Esposito V, Tebano A, et al. Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small. 2010;6(17):1863–1867.
  • Li B, Zhang J, Kaspar T, et al. Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Phys Chem Chem Phys. 2013;15(4):1296–1301.
  • Shen W, Jiang J, Ni C, et al. Two-dimensional vacancy trapping in yttria doped ceria. Solid State Ionics. 2014;255:13–20.
  • Lee S, Zhang W, Khatkhatay F, et al. Strain tuning and strong enhancement of ionic conductivity in SrZrO3–RE2O3 (RE= Sm, Eu, Gd, Dy, and Er) nanocomposite films. Adv Funct Mater. 2015;25(27):4328–4333.
  • Yoon J, Cho S, Kim JH, et al. Vertically aligned nanocomposite thin films as a cathode/electrolyte interface layer for thin-film solid oxide fuel cells. Adv Funct Mater. 2009;19(24):3868–3873.
  • Su Q, Yoon D, Chen A, et al. Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J Power Sources. 2013:242,455–463.
  • Lee S, Sangle A, Lu P, et al. Novel electroforming-free nanoscaffold memristor with very high uniformity, tunability, and density. Adv Mater. 2014;26(36):6284–6289.
  • Zhang W, Chen A, Bi Z, et al. Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: from lateral to vertical control. Curr Opin Solid State Mater Sci. 2014;18(1):6–18.
  • Chen A, Bi Z, Jia Q, et al. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 2013;61(8):2783–2792.
  • Harrington SA, Zhai J, Denev S, et al. Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat Nanotechnol. 2011;6(8);491–495.
  • Lee O, Harrington SA, Kursumovic A, et al. Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 2012;12(8):4311–4317.
  • MacManus-Driscoll JL. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv Funct Mater. 2010;20(13):2035–2045.
  • Hsieh Y-H, Strelcov E, Liou J-M, et al. Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano. 2013;7(10):8627–8633.
  • Zając W, Rusinek D, Zheng K, et al. Applicability of Gd-doped BaZrO3, SrZrO3, BaCeO3 and SrCeO3 proton conducting perovskites as electrolytes for solid oxide fuel cells. Cent Eur J Chem. 2013;11(4):471–484.
  • Lee S, Zhang W, Khatkhatay F, et al. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 2015;15(11);7362–7369.
  • Linford R, Hackwood S. Physical techniques for the study of solid electrolytes. Chem Rev. 1981;81(4);327–364.
  • Halat DM, Dervişoğlu R, Kim G, et al. Probing oxide-ion mobility in the mixed ionic–electronic conductor La2NiO4+ δ by solid-state 17O MAS NMR spectroscopy. J Am Chem Soc. 2016;138(36):11958–11969.
  • Seymour ID, Middlemiss DS, Halat DM, et al. Characterizing oxygen local environments in paramagnetic battery materials via 17O NMR and DFT calculations. J Am Chem Soc. 2016;138(30):9405–9408.
  • Dervişoğlu R, Middlemiss DS, Blanc F, et al. Joint experimental and computational 17O and 1H solid state NMR study of Ba2In2O4 (OH) 2 structure and dynamics. Chem Mater. 2015;27(11):3861–3873.
  • Paskiewicz DM, Sichel-Tissot R, Karapetrova E, et al. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 2016;16(1):534–542.
  • Gan Q, Rao R, Eom C, et al. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl Phys Lett. 1998;72:978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.