521
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Structure and composition of oxides in FeCrAl ODS alloy with Zr addition

ORCID Icon, , , ORCID Icon, &
Pages 1790-1795 | Received 30 Sep 2016, Accepted 28 Feb 2017, Published online: 04 May 2017

References

  • Xu HJ, Lu Z, Jia CY, et al. Influence of mechanical alloying time on morphology and properties of 15Cr-ODS steel powders. High Temp Mater Proc. 2016;35(5):473–477. doi: 10.1515/htmp-2014-0229
  • Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J Nucl Mater. 2011;417(1–3):176–179. doi: 10.1016/j.jnucmat.2010.12.300
  • Odette GR, Alinger MJ, Wirth BD. Recent developments in irradiation-resistant steels. Annu Rev Mater Res. 2008;38:471–503. doi: 10.1146/annurev.matsci.38.060407.130315
  • Xu HJ, Lu Z, Jia CY, et al. Microstructure and mechanical property of 12Cr oxide dispersion strengthened steel. High Temp Mater Proc. 2016;35(3):321–325. doi: 10.1515/htmp-2014-0163
  • Xu HJ, Lu Z, Wang DM, et al. Effect of zirconium addition on the microstructure and mechanical properties of 15Cr-ODS ferritic steels consolidated by hot isostatic pressing. Fusion Eng Des. 2017;114:33–39. doi: 10.1016/j.fusengdes.2016.11.011
  • Xu HJ, Lu Z, Wang DM, et al. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition. Nucl Eng Technol. 2017;49(1):178–188. doi: 10.1016/j.net.2017.01.002
  • Xu HJ, Lu Z, Wang DM, et al. Microstructural evolution in a new Fe based ODS alloy processed by mechanical alloying. Nucl Mater Energy. 2016;7:1–4. doi: 10.1016/j.nme.2016.04.006
  • Tan L, Ren X, Allen TR. Corrosion behavior of 9–12% Cr ferritic–martensitic steels in supercritical water. Corros Sci. 2010;52(4):1520–1528. doi: 10.1016/j.corsci.2009.12.032
  • Xia YP, Wang XP, Zhuang Z, et al. Microstructure and oxidation properties of 16Cr–5Al–ODS steel prepared by sol–gel and spark plasma sintering methods. J Nucl Mater. 2013;432(1–3):198–204. doi: 10.1016/j.jnucmat.2012.07.039
  • Hsiung LL, Fluss MJ, Tumey SJ, et al. Formation mechanism and the role of nanoparticles in Fe–Cr ODS steels developed for radiation tolerance. Phys Rev B. 2010;82(18):184103-1–184103-13. doi: 10.1103/PhysRevB.82.184103
  • Klimiankou M, Lindau R, Möslang A, et al. TEM study of PM 2000 steel. Powder Metall. 2005;48(3):277–287. doi: 10.1179/174329005X64171
  • Maruzen. Metal date book. Tokyo: The Japan Institute of Metals; 1984, p. 84.
  • Gao R, Zhang T, Wang XP, et al. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum. J Nucl Mater. 2014;444(1–3):462–468. doi: 10.1016/j.jnucmat.2013.10.038
  • Furukawa T, Ohtsuka S, Inoue M, et al. Super ODS steels R and D for fuel cladding of next generation nuclear system, 4; mechanical properties at elevated temperatures. Proceedings of the ICAPP 2009, Tokyo, Japan, 2009, article ID. 9221.
  • Yu CZ, Oka H, Hashimoto N, et al. Development of damage structure in 16Cr–4Al ODS steels during electron-irradiation. J Nucl Mater. 2011;417(1-3):286–288. doi: 10.1016/j.jnucmat.2011.02.037
  • Kishimoto H, Kasada R, Kimura A, et al. Super ODS steels R and D for fuel cladding on next generation nuclear systems, 8; ion irradiation effects at elevated temperatures. Proceedings of the ICAPP 2009, Tokyo, Japan, 2009, article ID. 9219.
  • Zhang CH, Kimura A, Kasada R, et al. Characterization of the oxide particles in Al-added high-Cr ODS ferritic steels. J Nucl Mater. 2011;417(1–3):221–224. doi: 10.1016/j.jnucmat.2010.12.063
  • Xu HJ, Lu Z, Ukai S, et al. Evolution of Y2O3 and its influence on the microstructure and mechanical properties of FeCrAl ODS alloys. (to be published).
  • Unocic KA, Pint BA, Hoelzer DT. Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys. J Mater Sci. 2016;51(20):9190–9206. doi: 10.1007/s10853-016-0111-5
  • Klimenkov M, Lindau R, Möslang A. New insights into the structure of ODS particles in the ODS-Eurofer alloy. J Nucl Mater. 2009;386–388:553–556. doi: 10.1016/j.jnucmat.2008.12.174
  • de Castro V, Marquis EA, Lozano-Perez S, et al. Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe–12Cr alloy. Acta Mater. 2011;59(10):3927–3936. doi: 10.1016/j.actamat.2011.03.017
  • Higgins MP, Liu CY, Lu Z, et al. Crossover from disordered to core–shell structures of nano-oxide Y2O3 dispersed particles in Fe. Appl Phys Lett. 2016;109(3):031911-1–031911-4. doi: 10.1063/1.4959776
  • Xu HJ, Lu Z, Ukai S, et al. Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe–15Cr alloy powders with Ti and Zr additions. J Alloy Compd. 2017;693:177–187. doi: 10.1016/j.jallcom.2016.09.133
  • Hsiung LL, Fluss MJ, Kimura A. Structure of oxide nanoparticles in Fe–16Cr MA/ODS ferritic steel. Mater Lett. 2010;64(16):1782–1785. doi: 10.1016/j.matlet.2010.05.039
  • Ching WY, Xu YN. Nonscalability and nontransferability in the electronic properties of the Y–Al–O system. Phys Rev B. 1999;59(20):12815–12821. doi: 10.1103/PhysRevB.59.12815

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.