2,283
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Metal-organic frameworks based materials for photocatalytic CO2 reduction

Pages 1737-1749 | Received 09 Dec 2016, Accepted 03 Apr 2017, Published online: 02 May 2017

References

  • Fischer H, Wahlen M, Smith J, et al. Ice core records of atmospheric CO2 around the last three glacial terminations. Science. 1999;283(5408):1712–1714. doi: 10.1126/science.283.5408.1712
  • Demicco RV, Lowenstein TK, Hardie LA. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology. 2003;31(9):793–796. doi: 10.1130/G19727.1
  • U.S. Department of Commerce, NOAA, NOAA Research, Earth System Research Laboratory and G.M. Division [cited 2017 March 10]; available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html
  • Kuramochi T, Ramírez A, Turkenburg W, et al. Effect of CO2 capture on the emissions of air pollutants from industrial processes. Int J Greenh Gas Con. 2012;10:310–328. doi: 10.1016/j.ijggc.2012.05.022
  • MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies. Energy Environ Sci. 2010;3(11):1645–1669. doi: 10.1039/c004106h
  • Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 2007;28:2975–2992. doi: 10.1039/b700658f
  • Izumi Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev. 2013;257(1):171–186. doi: 10.1016/j.ccr.2012.04.018
  • Fan W, Zhang Q, Wang Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys. 2013;15(8):2632–2649. doi: 10.1039/c2cp43524a
  • Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev. 2014;43(16):5982–5993. doi: 10.1039/C4CS00103F
  • Gascon J, Corma A, Kapteijn F, et al. Metal organic framework catalysis: Quo vadis? ACS Catal. 2014;4(2):361–378. doi: 10.1021/cs400959k
  • Corma A, García H, Llabrés i Xamena FX. Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev. 2010;110(8):4606–4655. doi: 10.1021/cr9003924
  • Taheri Najafabadi A. Emerging applications of graphene and its derivatives in carbon capture and conversion: current status and future prospects. Renew Sust Energ Rev. 2015;41:1515–1545. doi: 10.1016/j.rser.2014.09.022
  • Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95(3):735–758. doi: 10.1021/cr00035a013
  • Morris AJ, Meyer GJ, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res. 2009;42(12):1983–1994. doi: 10.1021/ar9001679
  • Xu H, Ouyang S, Liu L, et al. Recent advances in TiO2-based photocatalysis. J Mater Chem A. 2014;2(32):12642–12661. doi: 10.1039/C4TA00941J
  • Cao Y, Li Q, Li C, et al. Surface heterojunction between (001) and (101) facets of ultrafine anatase TiO2 nanocrystals for highly efficient photoreduction CO2 to CH4. Appl Catal B Environ. 2016;198:378–388. doi: 10.1016/j.apcatb.2016.05.071
  • Meng X, Ouyang S, Kako T, et al. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem Commun. 2014;50(78):11517–11519. doi: 10.1039/C4CC04848B
  • Indrakanti VP, Kubicki JD, Schobert HH. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci. 2009;2(7):745–758. doi: 10.1039/b822176f
  • Ola O, Maroto-Valer MM. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C Photochem Rev. 2015;24:16–42. doi: 10.1016/j.jphotochemrev.2015.06.001
  • Dilla M, Schlögl R, Strunk J. Photocatalytic CO2  reduction under continuous flow high-purity conditions: quantitative evaluation of CH4  formation in the steady-state. ChemCatChem. 2017;9(4):696–704. doi: 10.1002/cctc.201601218
  • He H, Perman JA, Zhu G, et al. Metal-organic frameworks for CO2 chemical transformations. Small. 2016;12(46):6309–6324. doi: 10.1002/smll.201602711
  • Wang C, Xie Z, deKrafft KE, et al. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc. 2011;133(34):13445–13454. doi: 10.1021/ja203564w
  • Fu Y, Sun D, Chen Y, et al. An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed Engl. 2012;124(14):3420–3423. doi: 10.1002/ange.201108357
  • Sun D, Fu Y, Liu W, et al. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry. 2013;19(42):14279–14285. doi: 10.1002/chem.201301728
  • Wang S, Yao W, Lin J, et al. Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed Engl. 2014;53(4):1034–1038. doi: 10.1002/anie.201309426
  • Liu Q, Low Z-X, Li L, et al. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A. 2013;1(38):11563–11569. doi: 10.1039/c3ta12433a
  • Liu Y, Yang Y, Sun Q, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework. ACS Appl Mater Interfaces. 2013;5(15):7654–7658. doi: 10.1021/am4019675
  • Sun D, Liu W, Fu Y, et al. Noble metals can have different effects on photocatalysis over metal–organic frameworks (MOFs): a case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chemistry. 2014;20(16):4780–4788. doi: 10.1002/chem.201304067
  • Wang S, Lin J, Wang X. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys Chem Chem Phys. 2014;16(28):14656–14660. doi: 10.1039/c4cp02173h
  • Wang DK, Huang R, Liu W, et al. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014;4(12):4254–4260. doi: 10.1021/cs501169t
  • Li R, Hu J, Deng M, et al. Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater. 2014;26(28):4783–4788. doi: 10.1002/adma.201400428
  • Sun D, Liu W, Qiu M, et al. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal-organic frameworks (MOFs). Chem Commun. 2015;51(11):2056–2059. doi: 10.1039/C4CC09407G
  • Sun D, Gao Y, Fu J, et al. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chem Commun. 2015;51:2645–2648. doi: 10.1039/C4CC09797A
  • Wang S, Wang X. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl Catal B Environ. 2015;162:494–500. doi: 10.1016/j.apcatb.2014.07.026
  • Chambers MB, Wang X, Elgrishi N, et al. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal-organic frameworks. ChemSusChem. 2015;8(4):603–608. doi: 10.1002/cssc.201403345
  • Lee Y, Kim S, Kang JK, et al. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem Commun (Camb). 2015;51(26):5735–5738. doi: 10.1039/C5CC00686D
  • Lee Y, Kim S, Fei H, et al. Photocatalytic CO2 reduction using visible light by metal-monocatecholato species in a metal-organic framework. Chem Commun (Camb). 2015;51(92):16549–16552. doi: 10.1039/C5CC04506A
  • Zhang SQ, Li L, Zhao S, et al. Hierarchical metal-organic framework nanoflowers for effective CO2 transformation driven by visible light. J Mater Chem A. 2015;3(30):15764–15768. doi: 10.1039/C5TA03322E
  • Zhang S, Li L, Zhao S, et al. Construction of interpenetrated ruthenium metal-organic frameworks as stable photocatalysts for CO2 reduction. Inorg Chem. 2015;54(17):8375–9. doi: 10.1021/acs.inorgchem.5b01045
  • Fei H, Sampson MD, Lee Y, et al. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg Chem. 2015;54(14):6821–6828. doi: 10.1021/acs.inorgchem.5b00752
  • Shi L, Wang T, Zhang H, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Funct Mater. 2015;25(33):5360–5367. doi: 10.1002/adfm.201502253
  • Xu HQ, Hu J, Wang D, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc. 2015;137(42):13440–13443. doi: 10.1021/jacs.5b08773
  • Wang M, Wang D, Li Z. Self-assembly of CPO-27-Mg/TiO2 nanocomposite with enhanced performance for photocatalytic CO2 reduction. Appl Catal B Environ. 2016;183:47–52. doi: 10.1016/j.apcatb.2015.10.037
  • Huang R, Peng Y, Wang C, et al. A rhenium-functionalized metal-organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. Eur J Inorgan Chem. 2016;2016:4358–4362. doi: 10.1002/ejic.201600064
  • Zhang H, Wei J, Dong J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed Engl. 2016;55(46):14310–14314. doi: 10.1002/anie.201608597
  • Chen D, Xing H, Wang C, et al. Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J Mater Chem A. 2016;4(7):2657–2662. doi: 10.1039/C6TA00429F
  • Yan S, Ouyang S, Xu H, et al. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J Mater Chem A. 2016;4(39):15126–15133. doi: 10.1039/C6TA04620G
  • Sadeghi N, Sharifnia S, Sheikh Arabi M. A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. J CO2 Util. 2016;16:450–457. doi: 10.1016/j.jcou.2016.10.006
  • Farha OK, Shultz AM, Sarjeant AA, et al. Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc. 2011;133(15):5652–5655. doi: 10.1021/ja111042f
  • Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl. 2013;52(29):7372–7408. doi: 10.1002/anie.201207199
  • Lo C-C, Hung C-H, Yuan C-S, et al. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energ Mater Solar Cells. 2007;91(19):1765–1774. doi: 10.1016/j.solmat.2007.06.003
  • Tahir B, Tahir M, Amin NS. Performance analysis of monolith photoreactor for CO2 reduction with H2. Energy Convers Manage. 2015;90:272–281. doi: 10.1016/j.enconman.2014.11.018
  • Maschmeyer T, Che M. Catalytic aspects of light-induced hydrogen generation in water with TiO2 and other photocatalysts: a simple and practical way towards a normalization? Angew Chem Int Ed Engl. 2010;49(9):1536–1539. doi: 10.1002/anie.200903921
  • Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 2001;293(5528):269–271. doi: 10.1126/science.1061051

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.