223
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

High-temperature deformation mechanism of γ-TiAl-based alloy with ultrafine grains

ORCID Icon, &
Pages 1838-1845 | Received 07 Feb 2017, Accepted 27 Apr 2017, Published online: 16 May 2017

References

  • Oehring M, Appel F, Ennis PJ, et al. A TEM study of deformation processes and microstructural changes during long-term tension creep of a two-phase γ-titanium aluminide alloy. Intermetallics. 1999;7(7):335–345. doi: 10.1016/S0966-9795(98)00113-7
  • Li J, Liu Y, Liu B, et al. Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy. Mater Charact. 2014;95(3):148–156. doi: 10.1016/j.matchar.2014.06.015
  • Yuanyuan L, Weidong Z, Zhengping Xi, et al. Microstructure, mechanical properties and oxidation behavior of a Hot-extruded TiAl containing T. Rare Metal Mat Eng. 2015;44(2):282–287. doi: 10.1016/S1875-5372(15)30020-5
  • Kumaran S, Chantaiah B, Srinivasa Rao T. Effect of niobium and aluminium additions in TiAl prealloyed powders during high-energy ball milling. Mater Chem Phys. 2008;108(1):97–101. doi: 10.1016/j.matchemphys.2007.09.024
  • Li XW, Sun HF, Fang WB, et al. Structure and morphology of Ti-Al composite powders treated by mechanical alloying. Trans Nonferr Metal Soc. 2011;21(31):338–341. doi: 10.1016/S1003-6326(11)61602-6
  • Gloantc AL, Milani T, Henaff G. Impact of microstructure, temperature and strain ratio on energy-based low-cycle fatigue life prediction models for TiAl alloys. Int J Fatigue. 2010;32(7):1015–1021. doi: 10.1016/j.ijfatigue.2009.11.008
  • Liu B, Liu Y, Li YP, et al. Thermomechanical characterization of β-stabilized Ti–45Al–7Nb–0.4W–0.15B alloy. Intermetallics. 2011;19(8):1184–1190. doi: 10.1016/j.intermet.2011.03.021
  • Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides. Mater Sci Eng. 1998;22(5):187–268. doi: 10.1016/S0927-796X(97)00018-1
  • Appel F, Oehring M, Wagner R. Novel design concepts for gamma-base titanium aluminide alloys. Intermetallics. 2000;8(9–11):1283–1312. doi: 10.1016/S0966-9795(00)00036-4
  • Lin JP, Xu XJ, Wang YL, et al. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics. 2007;15(5):668–674. doi: 10.1016/j.intermet.2006.10.029
  • He X, Yu Z, Lai X. Analysis of high temperature deformation behavior of a high Nb containing TiAl based alloy. Mater Lett. 2008;62(26):4181–4183. doi: 10.1016/j.matlet.2008.05.071
  • Cheng L, Xue X, Tang B, et al. Flow characteristics and constitutive modeling for elevated temperature deformation of a high Nb containing TiAl alloy. Intermetallics. 2014;49(4):23–28. doi: 10.1016/j.intermet.2014.01.007
  • Kim HY, Sohn WH, Hong SH. High temperature deformation of Ti–(46–48)Al–2W intermetallic compounds. Mater Sci Eng A. 1998;251(1):216–225. doi: 10.1016/S0921-5093(98)00614-5
  • Zhao XH. Preparation and high-temperature compression deformation behavior of powder metallurgy TiAl-based alloy [MS dissertation]. 2008;7:41–43.
  • Das K, Das S. Deformation mechanisms in the γ-TiAl phase present in the Ti-46Al-2V-0.4Er alloy. J Mater Sci. 1999;34(10):2345–2349. doi: 10.1023/A:1004542127917
  • Liu N, Li Z, Xu WY, et al. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Metals. 2017;36(4):236–241. doi: 10.1007/s12598-016-0746-z
  • Jabbar H, Monchoux J, Houdellier F, et al. Microstructure and mechanical properties of high niobium containing TiAl alloys elaborated by spark plasma sintering. Intermetallics. 2010;18(12):2312–2321. doi: 10.1016/j.intermet.2010.07.024
  • Hua Chen, Huimin Zhou, Yang Zou. Synthesis of ultrafine crystal/nanocrystalline TiAl-based alloy by in situ sintering. Rare Metal Mat Eng. 2015;44(10):2387–2390. doi: 10.1016/S1875-5372(16)30026-1
  • He YH, Huang BY, Chen XQ, et al. Investigation on the microstructures and phases of TiAl-based alloy sample heat-treated at double temperatures. J Chin Electron Microsc Soc. 1997;16(1):31–38.
  • Zhou LG, He LL, Ye HQ. Computer simulations on grain boundary in TiAl and its comparison with experimental observations. J Chin Electron Microsc Soc. 2002;21(3):240–246.
  • Chen CL, Lu W, He LL, et al. Deformation-induced gamma→DI-alpha2 phase transformation of TiAl alloys. J Chin Electron Microsc Soc. 2007;26(4):276–287.
  • Lu W. Electron microscopy study of oxide scale of Nb-TiAl alloys. [PhD dissertation]. China: Institute of Metal Research, Chinese Academy of Sciences; 2007. 5:45–80.
  • Chen CL. TEM study of the deformation microstructure of TiAl alloys. [PhD dissertation]. China: Institute of Metal Research, Chinese Academy of Sciences; 2007. 4:40–83.
  • Lu YH, Zhang YG, Qiao LJ et al.. In-situ TEM study of fracture mechanisms of polysynthetically twinned (PST) crystals of TiAl alloys. Mater Sci Eng A. 2000;289(1):91–98.
  • Leyens C, Peters M. Titanium and titanium alloys [M]. China: Chemical Industry Press. 2005;1:120–121.
  • Li JB, Liu Y, Liu B, et al. High temperature deformation behavior of near γ-phase high Nb-containing TiAl alloy. Intermetallics. 2014;52:49–56. doi: 10.1016/j.intermet.2014.03.013
  • Cheng L, Chang H, Tang B, et al. Deformation and dynamic recrystallization behavior of a high Nb containing TiAl alloy. J Alloys Compd. 2013;552(9):363–369. doi: 10.1016/j.jallcom.2012.11.076
  • Yamaguchi M, Umakoshi Y. The deformation behaviour of intermetallic superlattice compounds. Prog Mater Sci. 1990;34(1):1–148. doi: 10.1016/0079-6425(90)90002-Q
  • He LL, Ye HQ. Study on defects in the interface of γ/α2 phase in intermetallic compound TiAl (Mn). Chinese J Electron Microsc. 1993: 128–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.