449
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Deformation mechanism transition in Fe–17Mn–0.4C–0.06V TWIP steel with different strain rates

, , , &
Pages 242-251 | Received 18 May 2017, Accepted 03 Aug 2017, Published online: 30 Aug 2017

References

  • Curtze S, Kuokkala VT, Hokka M, et al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates. Mater Sci Eng A. 2009;507(1-2):124–131.
  • Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441(1–2):1–17.
  • Bintu A, Vincze G, Picu CR, et al. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels. Mater Sci Eng A. 2015;629:54–59.
  • Gutierrez-Urrutia I, Raabe D. Dislocation and twin substructure evolution during strain hardening of an Fe-22wt.% Mn-0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta Mater. 2011;59(16):6449–6462.
  • Hamada AS, Karjalainen LP, Somani MC. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Mater Sci Eng A. 2007;467(1–2):114–124.
  • Pierce DT, Jiménez JA, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation. Acta Mater. 2015;100:178–190.
  • Wu H, Niu G, Cao J, et al. Annealing of strain-induced martensite to obtain micro/nanometre grains in austenitic stainless. Mater Sci Technol. 2017;33(4):480–486.
  • Remy L, Pineau A. Twinning and strain-induced FCC→HCP transformation in the Fe-Mn-Cr-C system. Mater Sci Eng. 1977;28(1):99–107.
  • Frommeyer G, Brüx U, Neumann P. Supra-Ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003;43(1):438–446.
  • Allain S, Chateau JP, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater Sci Eng A. 2004;387–389:158–162.
  • Asghari A, Zarei-Hanzaki A, Eskandari M. Temperature dependence of plastic deformation mechanisms in a modified transformation-twinning induced plasticity steel. Mater Sci Eng A. 2013;579:150–156.
  • Linderov M, Segel C, Weidner A, et al. Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy. Mater Sci Eng A. 2014;597:183–193.
  • Khosravifard A. Influence of high strain rates on the mechanical behavior of high-manganese steels. Iranian J Mater Forming. 2014;1(1):1–10.
  • Grässel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-AI steels. Mater Sci Technol. 1998;14(12):1213–1217.
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-prope-rties-application. Int J Plast. 2000;16(10-11):1391–1409.
  • Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129–5141.
  • Lee S, Estrin Y, De Cooman BC. Effect of the strain rate on the TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP steel. Metall Mater Trans A. 2014;45(2):717–730.
  • Renard K, Idrissi H, Schryvers D, et al. Multiscale characterization of the work hardening mechanisms in Fe-Mn based TWIP steels. Steel Res Int. 2012;83(4):385–390.
  • Yang HK, Zhang ZJ, Tian YZ, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels. Mater Sci Eng A. 2017;690:146–157.
  • Yen HW, Huang MX, Scott CP, et al. Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scr Mater. 2012;66(12):1018–1023.
  • Malard B, Remy B, Scott C, et al. Hydrogen trapping by VC precipitates and structural defects in a high strength Fe-Mn-C steel studied by small-angle neutron scattering. Mater Sci Eng A. 2012;536:110–116.
  • Tian X, Zhang Y. Effect of Si content on the stacking fault energy in γ-Fe-Mn-Si-C alloys: part I. X-ray diffraction line profile analysis. Mater Sci Eng A. 2009;516(1–2):73–77.
  • Dumay A, Chateau JP, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel. Mater Sci Eng A. 2008;483–484:184–187.
  • Adler PH, Olson GB, Owen WS. Strain hardening of hadfield manganese steel. Metall Mater Trans A. 1986;17(10):1725–1737.
  • Saeed-Akbari A, Imlau J, Prahl U, et al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A. 2009;40(13):3076–3090.
  • Campbell JD. Dynamic plasticity: macroscopic and microscopic aspects. Mater Sci Eng. 1973;12(1):3–21.
  • Xu SQ, Ruan D, Beynon JH, et al. Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading. Mater Sci Eng A. 2013;573:132–140.
  • Zhang LF, Song RB, Zhao C, et al. Work hardening behavior involving the substructural evolution of an austenite-ferrite Fe-Mn-Al-C steel. Mater Sci Eng A. 2015;640:225–234.
  • Xiong RG, Fu RY, Su Y, et al. Tensile properties of TWIP steel at high strain rate. J Iron Steel Res Int. 2009;16(1):81–86.
  • Shiekhelsouk MN, Favier V, Inal K, et al. Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect. Int J Plast. 2009;25(1):105–133.
  • Weber L, Kouzeli M, San Marchi C, et al. On the use of Considere’s criterion in tensile testing of materials which accumulate internal damage. Scr Mater. 1999;41(5):549–551.
  • Takaki S, Furuya T, Tokunaga Y. Effect of Si and Al additions on the low temperature toughness and fracture mode of Fe-27Mn alloys. ISIJ Int. 1990;30(8):632–638.
  • Koyama M, Sawaguchi T, Lee T, et al. Work hardening associated with ϵ-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels. Mater Sci Eng A. 2011;528(24):7310–7316.
  • Guimaraes JRC, Werneck VP. The effects of strain rate grain size and temperature on the yield stress of a metastable austenite. Mater Sci Eng. 1978;34(1):87–90.
  • Guimaraes JRC. Stress assisted martensite: pre-strain, grain-size and strain-rate effects. Mater Sci Eng A. 2008;475(1–2):343–347.
  • Brooks JW, Loretto MH, Smallman RE. Direct observations of martensite nuclei in stainless steel. Acta Metall. 1979;27(12):1839–1847.
  • Zhang ZB. Investigation on microstructure-mechanical property and deformation mechanism of Fe-Mn-C TWIP steels [PhD thesis]. Northeastern University; 2013. p. 77.
  • Curtze S, Kuokkala VT. Effects of temperature and strain rate on the tensile properties of TWIP steels. Matéria. 2010;15(2):157–163.
  • Wu ZQ, Tang ZY, Li HY, et al. Effect of strain rate on microstructure evolution and mechanical behavior of a low C high Mn TRIP/TWIP steels. Acta Metall Sinica. 2012;48(5):593–600.
  • Tang ZY, Wu ZQ, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation. Acta Metall Sinica. 2011;47(11):1426–1433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.