459
Views
11
CrossRef citations to date
0
Altmetric
Articles

Structure and orientation relationship of new precipitates in a Cu–Cr–Zr alloy

, ORCID Icon, ORCID Icon, &
Pages 282-288 | Received 11 Feb 2015, Accepted 10 Aug 2017, Published online: 15 Sep 2017

References

  • Liu Q, Zhang X, Ge Y, et al. Effect of processing and heat treatment on behavior of Cu–Cr–Zr alloys to railway contact wire. Metall Mater Trans A. 2006;37:3233–3238. doi: 10.1007/BF02586158
  • Su JH, Dong QM, Liu P, et al. Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater Sci Eng A. 2005;392:422–426. doi: 10.1016/j.msea.2004.09.041
  • Xia CD, Jia YL, Zhang W, et al. Study of deformation and aging behaviors of a hot rolled–quenched Cu–Cr–Zr–Mg–Si alloy during thermomechanical treatments. Mater Des. 2012;39:404–409. doi: 10.1016/j.matdes.2012.03.003
  • Deng J, Zhang X, Shang S, et al. Effect of Zr addition on the microstructure and properties of Cu–10Cr in situ composites. Mater Des. 2009;30:4444–4449. doi: 10.1016/j.matdes.2009.04.017
  • Batra IS, Dey GK, Kulkarni UD, et al. Microstructure and properties of a Cu–Cr–Zr alloy. J Nucl Mater. 2001;299:91–100. doi: 10.1016/S0022-3115(01)00691-2
  • Shukla AK, Narayana Murty SVS, Suresh Kumar R, et al. Effect of hot rolling on the enhancement of mechanical properties of low density Cu–Cr–Nb sintered alloy. Mater Des. 2013;43:125–133. doi: 10.1016/j.matdes.2012.06.041
  • Correia JB, Davies HA, Sellars CM. Strength in rapidly solidified age hardened Cu–Cr and Cu–Cr–Zr alloys. Acta Mater. 1997;45:177–190. doi: 10.1016/S1359-6454(96)00142-5
  • Huang FX, Ma JS, Ning HL, et al. Analysis of phases in a Cu–Cr–Zr alloy. Scr Mater. 2003;48:79–84. doi: 10.1016/S1359-6462(02)00350-0
  • Watanabe C, Monzen R, Tazaki K. Mechanical properties of Cu–Cr system alloys with and without Zr and Ag. J Mater Sci. 2008;43:813–819. doi: 10.1007/s10853-007-2159-8
  • Hatakeyama M, Toyama T, Yang J, et al. 3D-AP and positron annihilation study of precipitation behavior in Cu–Cr–Zr alloy. J Nucl Mater. 2009;386:852–855. doi: 10.1016/j.jnucmat.2008.12.266
  • Chbihi A, Sauvage X, Blavette D. Atomic scale investigation of Cr precipitation in copper. Acta Mater. 2012;60:4575–4585. doi: 10.1016/j.actamat.2012.01.038
  • Sinclair CW, Embury JD, Weatherly GC, et al. Diffraction based characterization of a directionally solidified Cu–Cr eutectic alloy. J Cryst Growth. 2005;276,:321–331. doi: 10.1016/j.jcrysgro.2004.11.374
  • Dahmen U, Witcomb MJ, Westmacott KH. Morphology of Cr precipitates in an overaged Cu-0.3Cr alloy. Scr Mater. 1988;22:1867–1872.
  • Luo CP, Dahmen U. Morphology and crystallography of Cr precipitates in a Cu-0.33 wt% Cr alloy. Acta Mater. 1994;42:1923–1932. doi: 10.1016/0956-7151(94)90017-5
  • Fujii T, Nakazawa H, Kato M, et al. Crystallography and morphology of nanosized Cr particles in a Cu–0.2% Cr alloy. Acta Mater. 2000;48:1033–1045. doi: 10.1016/S1359-6454(99)00411-5
  • Tang NY, Taplin NM, Dunlop GL. Precipitation and aging in high-conductivity Cu–Cr alloys with additions of zirconium and magnesium. Mater Sci Technol. 1985;1:270–275. doi: 10.1179/mst.1985.1.4.270
  • Liu P, Kang BX, Cao XG, et al. Aging precipitation and recrystallization of rapidly solidified Cu–Cr–Zr–Mg alloy. Mater Sci Eng A. 1999;265:262–267. doi: 10.1016/S0921-5093(98)01149-6
  • Su JH, Liu P, Li HJ, et al. Phase transformation in Cu–Cr–Zr–Mg alloy. Mater Lett 2007;61:4963–4966. doi: 10.1016/j.matlet.2007.03.085
  • Qi WX, Tu JP, Liu F, et al. Microstructure and tribological behavior of a peak aged Cu–Cr–Zr alloy. Mater Sci Eng A. 2003;343:89–96. doi: 10.1016/S0921-5093(02)00387-8
  • Mu SG, Guo FA, Tang YQ, et al. Study on microstructure and properties of aged Cu–Cr–Zr–Mg–RE alloy. Mater Sci Eng A. 2008;475:235–240. doi: 10.1016/j.msea.2007.04.056
  • Uwe H, Hermann S. The precipitation behavior of ITER-grade Cu–Cr–Zr alloy after simulating the thermal cycle of hot isostatic pressing. J Nucl Mater. 2000;279:31–45. doi: 10.1016/S0022-3115(99)00285-8
  • Batra IS, Dey GK, Kulkarni UD, et al. Precipitation in a Cu–Cr–Zr alloy mater. Sci Eng A. 2003;356:32–36. doi: 10.1016/S0921-5093(02)00852-3
  • Zeng KJ, Hamalainen M. Phase relationships in Cu-rich corner of the Cu–Cr–Zr phase diagram. Scr Mater. 1995;32:2009–2014. doi: 10.1016/0956-716X(95)00084-9
  • Zeng KJ, Hamalainen M. A theoretical study of the phase equilibria in the Cu–Cr–Zr system. J Alloys Compd. 1995;220:53–61. doi: 10.1016/0925-8388(94)06029-0
  • Zhang DL, Mihara K, Tsubokawa S, et al. Precipitation characteristics of Cu–15Cr–0.15Zr in situ composite. Mater Sci Technol. 2000;16:357–363. doi: 10.1179/026708300101507866
  • Hu T, Chen JH, Liu JR, et al. The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys. Acta Mater. 2013;61:1210–1219. doi: 10.1016/j.actamat.2012.10.031
  • Shi ZZ, Zhang WZ. A transmission electron microscopy investigation of crystallography of τ-Mg32(Al, Zn)49 precipitates in a Mg–Zn–Al alloy. Scr Mater. 2011;64:201–204. doi: 10.1016/j.scriptamat.2010.09.044
  • Hirth JP, Lothe J. Theory of dislocations. New York: John Wiley & Sons; 1982.
  • Zhang WZ, Weatherly GC. On the crystallography of precipitation. Prog Mater Sci. 2005;50:181–292. doi: 10.1016/j.pmatsci.2004.04.002
  • Liu CM. Phase diagrams of copper alloys. Changsha: Central South University Press; 2011 (in Chinese).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.