278
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of various strengthening methods on the properties of Cu–Ti–B alloys

, , , , &
Pages 340-346 | Received 04 Jul 2017, Accepted 31 Aug 2017, Published online: 24 Oct 2017

Reference

  • Sakai Y, Schneider-Muntau HJ. Ultra-high strength, high conductivity Cu–Ag alloy wires. Acta Mater. 1997;45:1017–1023. doi: 10.1016/S1359-6454(96)00248-0
  • Tian YZ, Zhang ZF. Microstructures and tensile deformation behavior of Cu–16 wt.%Ag binary alloy. Mater Sci Eng A. 2009;508:209–213.
  • Freudenberger J, Grünberger W, Botcharova E, et al. Mechanical properties of Cu-based micro- and macrocomposites. Adv Eng Mater. 2002;4:677–681. doi: 10.1002/1527-2648(20020916)4:9<677::AID-ADEM677>3.0.CO;2-I
  • Botcharova E, Freudenberger J, Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Mater. 2006;54:3333–3341. doi: 10.1016/j.actamat.2006.03.021
  • Correia JB, Davies HA, Sellars CM. Strengthening in rapidly solidified age hardened Cu–Cr and Cu–Cr–Zr alloys. Acta Mater. 1997;45:177–190. doi: 10.1016/S1359-6454(96)00142-5
  • Islamgaliev RK, Nesterov KM, Bourgon J, et al. Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J Appl Phys. 2014;115:194301. doi: 10.1063/1.4874655
  • Nagarjuna S, Balasubramanian K, Sarma DS. Effect of prior cold work on mechanical properties, electrical conductivity and microstructure of aged Cu–Ti alloys. J Mater Sci. 1999;34:2929–2942. doi: 10.1023/A:1004603906359
  • Soffa WA, Laughlin DE. High-strength age hardening copper-titanium alloys: redivivus. Prog Mater Sci. 2004;49:347–366. doi: 10.1016/S0079-6425(03)00029-X
  • Semboshi S, Nishida T, Numakura H, et al. Effects of aging temperature on electrical conductivity and hardness of Cu–3 at. pct Ti alloy aged in a hydrogen atmosphere. Metall Mater Trans A. 2011;42:2136–2143. doi: 10.1007/s11661-011-0637-8
  • Raabe D, Ohsaki S, Hono K. Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater. 2009;57:5254–5263. doi: 10.1016/j.actamat.2009.07.028
  • Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater. 2002;50:1639–1651. doi: 10.1016/S1359-6454(01)00437-2
  • Qi WX, Tu JP, Liu F, et al. Microstructure and tribological behavior of a peak aged Cu–Cr–Zr alloy. Mater Sci Eng A. 2003;343:89–96. doi: 10.1016/S0921-5093(02)00387-8
  • Lu L, Shen YF, Chen XH, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Liu P, Su JH, Dong QM, et al. Optimization of aging treatment in lead frame copper alloy by intelligent technique. Mater Lett. 2005;59:3337–3342. doi: 10.1016/j.matlet.2005.05.069
  • Wei KX, Wei W, Wang F, et al. Microstructure, mechanical properties and electrical conductivity of industrial Cu–0.5%Cr alloy processed by severe plastic deformation. Mater Sci Eng A. 2011;528:1478–1484. doi: 10.1016/j.msea.2010.10.059
  • Guo MX, Shen K, Wang MP. Relationship between microstructure, properties and reaction conditions for Cu–TiB2 alloys prepared by in situ reaction. Acta Mater. 2009;57:4568–4579. doi: 10.1016/j.actamat.2009.06.030
  • Zou CL, Kang HJ, Wang W, et al. Effect of La addition on the particle characteristics, mechanical and electrical properties of in situ Cu–TiB2 composites. J Alloys Compd. 2016;687:312–319. doi: 10.1016/j.jallcom.2016.06.129
  • Jiang YH, Li D, Liang SH, et al. Phase selection of titanium boride in copper matrix composites during solidification. J Mater Sci. 2017;52:2957–2963. doi: 10.1007/s10853-016-0592-2
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56:230–241. doi: 10.1016/j.actamat.2007.09.020
  • Suryanarayanan R, Frey CA, Sastry ML. Mechanical properties of nanocrystalline copper produced by solution-phase synthesis. J Mater Res. 1996;11:439–448. doi: 10.1557/JMR.1996.0053
  • Maxwell JC. A treatise on electricity and magnetism. 3rd ed. New York (NY): Dover; 1954. p. 435.
  • Rahman M, Wang CC, Chen WH, et al. Electrical resistivity of titanium diboride and zirconium diboride. J Am Ceram Soc. 1995;78:1380–1382. doi: 10.1111/j.1151-2916.1995.tb08498.x
  • Mecking H, Kocks UF. Kinetics of flow and strain-hardening. Acta Metall. 1981;29:1865–1875. doi: 10.1016/0001-6160(81)90112-7
  • Kaveh M, Wiser N. Electrical resistivity of dislocations in metals. J Phys F Metal Phys. 1983;13:953–961. doi: 10.1088/0305-4608/13/5/009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.