813
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of particle size in microwave processing of metallic material systems

&
Pages 123-137 | Received 20 Sep 2017, Accepted 02 Nov 2017, Published online: 19 Dec 2017

References

  • Metaxas AC, Meredith RJ. Industrial microwave heating, no. 4. IET; 1983.
  • Mishra RR, Sharma AK. Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos Part A Appl S. 2016;81:78–97. doi: 10.1016/j.compositesa.2015.10.035
  • Venkatesh MS, Raghavan GS. An overview of microwave processing and dielectric properties of agri-food materials. Bio Sys Eng. 2004;88(1):1–8. doi: 10.1016/j.biosystemseng.2004.01.007
  • Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing—A review. Food Res Int. 2013;52(1):243–261. doi: 10.1016/j.foodres.2013.02.033
  • Wagner DE, Lawrence J, Bhaduri SB. Microwave-assisted solution combustion synthesis of high aspect ratio calcium phosphate nanoparticles. J Mater Res. 2013;28(22):3119–3129. doi: 10.1557/jmr.2013.314
  • Leonelli C, Mason TJ. Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process. 2010;49(9):885–900. doi: 10.1016/j.cep.2010.05.006
  • Zhou J, Shi C, Mei B, et al. Research on the technology and the mechanical properties of the microwave processing of polymer. J Mater Process Technol. 2003;137(1):156–158. doi: 10.1016/S0924-0136(02)01082-8
  • Thostenson ET, Chou TW. Microwave processing: fundamentals and applications. Compo Part A Appl S. 1999;30(9):1055–1071. doi: 10.1016/S1359-835X(99)00020-2
  • Clark DE, Folz DC, West JK. Processing materials with microwave energy. Mater Sci Eng A. 2000;287(2):153–158. doi: 10.1016/S0921-5093(00)00768-1
  • Sharma AK, Aravindhan S, Krishnamurthy R. Microwave glazing of alumina–titania ceramic composite coatings. Mater Lett. 2001;50(5):295–301. doi: 10.1016/S0167-577X(01)00243-9
  • Agrawal DK. Microwave processing of ceramics. Curr Opin Solid St M. 1998;3(5):480–485. doi: 10.1016/S1359-0286(98)80011-9
  • Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Comp. 2010;494(1):175–189. doi: 10.1016/j.jallcom.2010.01.068
  • Mishra RR, Sharma AK. A review of research trends in microwave processing of metal-based materials and opportunities in microwave metal casting. Criti Rev Solid State. 2016;41(3):217–255. doi: 10.1080/10408436.2016.1142421
  • Agrawal D, Roy R, Cheng J, et al. Full sintering of powdered metal parts in microwaves. Nature. 1999;399:668–670. doi: 10.1038/21390
  • Ripley EB, Oberhaus JA. Melting and heat treating metals using microwave heating. Ind Heat. 2005;72(5):65–70.
  • Srinath MS, Sharma AK, Kumar P. A new approach to joining of bulk copper using microwave energy. Mater Des. 2011;32(5):2685–2694. doi: 10.1016/j.matdes.2011.01.023
  • Standish N, Worner HK, Obuchowski DY. Particle size effect in microwave heating of granular materials. Powder Technol. 1991;66(3):225–230. doi: 10.1016/0032-5910(91)80034-G
  • Mondal A, Shukla A, Upadhyaya A, et al. Effect of porosity and particle size on microwave heating of copper. Sci Sinter. 2010;42(2):169–182. doi: 10.2298/SOS1002169M
  • Crane CA, Pantoya ML, Weeks BL, et al. The effects of particle size on microwave heating of metal and metal oxide powders. Powder Technol. 2014;256:113–117. doi: 10.1016/j.powtec.2014.02.008
  • Chandrasekaran S, Basak T, Srinivasan R. Microwave heating characteristics of graphite based powder mixtures. Int Commun Heat Mass. 2013;48:22–27. doi: 10.1016/j.icheatmasstransfer.2013.09.008
  • Rybakov KI, Semenov VE, Egorov SV, et al. Microwave heating of conductive powder materials. J Appl Phys. 2006;99(2):023506. doi: 10.1063/1.2159078
  • Yoshikawa N, Ishizuka E, Taniguchi S. Heating of metal particles in a single-mode microwave applicator. Mater Trans. 2006;47(3):898–902. doi: 10.2320/matertrans.47.898
  • Hayashi M, Yokoyama Y, Nagata K. Effect of particle size and relative density on powdery Fe3O4 microwave heating. J Microw Power Electromagn Energy. 2010;44(4):198–206. doi: 10.1080/08327823.2010.11689788
  • Mishra P, Upadhyaya A, Sethi G. Modeling of microwave heating of particulate metals. Metall Mater Trans B. 2006;37(5):839–845. doi: 10.1007/s11663-006-0066-z
  • Xu L, Srinivasakannan C, Peng J, et al. Study on characteristics of microwave melting of copper powder. J Alloys Comp. 2017;701:236–243. doi: 10.1016/j.jallcom.2017.01.097
  • Moore AF, Donald ES, Marvin SM. Method and apparatus for melting metals. Patent 7011136, US. 2006.
  • Chandrasekaran S, Basak T, Ramanathan S. Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol. 2011;211(3):482–487. doi: 10.1016/j.jmatprotec.2010.11.001
  • Pehrson BP, Moore AF. Method for casting thin metal objects. Patent, 9004148, US. 2015.
  • Mishra RR, Sharma AK. A new in-situ casting technique using microwave energy at 2.45 GHz. Proceedings of the India International Science Festival (Young Scientists’ Meet, paper no. Design 58); IIT Delhi, India; 2015. p. 1.
  • Mishra RR, Sharma AK. On mechanism of in-situ microwave casting of aluminium alloy 7039 and cast microstructure. Mater Des. 2016;112:97–106. doi: 10.1016/j.matdes.2016.09.041
  • Mishra RR, Sharma AK. On melting characteristics of bulk Al-7039 alloy during in-situ microwave casting. Appl Therm Eng. 2017;111:660–675. doi: 10.1016/j.applthermaleng.2016.09.122
  • Mishra RR, Sharma AK. Structure-property correlation in Al–Zn–Mg alloy cast developed through in-situ microwave casting. Mater Sci Eng A. 2017;688:532–544. doi: 10.1016/j.msea.2017.02.021
  • Mishra RR, Sharma AK. Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using microwave heating. Inter Metalcast. 2017. doi:10.1007/s40962-017-0176-1
  • Mishra RR, Sharma AK. Effect of susceptor and mold material on microstructure of in-situ microwave casts of Al-Zn-Mg alloy. Mater Des. 2017;131:428–440. doi: 10.1016/j.matdes.2017.06.038
  • Li Y, Xu F, Hu X, et al. Focusing effect of electromagnetic fields and its influence on sintering during the microwave processing of metallic particles. J Mater Res. 2015;30(23):3663–3670. doi: 10.1557/jmr.2015.344
  • Mishra RR, Rajesha S, Sharma AK. Microwave sintering of pure metal powders – a review. Int J Adv Mech Eng. 2014;4(3):315–322.
  • Leonelli C, Veronesi P, Denti L, et al. Microwave assisted sintering of green metal parts. J Mater Process Technol. 2008;205(1):489–496. doi: 10.1016/j.jmatprotec.2007.11.263
  • Mondal A, Upadhyaya A, Agrawal D. Effect of heating mode on sintering of tungsten. Int J Refract Met Hard Mater. 2010;28(5):597–600. doi: 10.1016/j.ijrmhm.2010.05.002
  • Ma J, Diehl JF, Johnson EJ, et al. Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts. J Appl Phys. 2007;101(7):074906. doi: 10.1063/1.2713087
  • Saitou K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scripta Mater. 2006;54(5):875–879. doi: 10.1016/j.scriptamat.2005.11.006
  • Jain M, Skandan G, Martin K, et al. Microwave sintering: a new approach to fine-grain tungsten-I. Int J Powder Metall. 2006;42(2):45–50.
  • Anklekar RM, Bauer K, Agrawal DK, et al. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall. 2005;48(1):39–46. doi: 10.1179/003258905X37657
  • Ertugrul O, Park HS, Onel K, et al. Effect of particle size and heating rate in microwave sintering of 316L stainless steel. Powder Technol. 2014;253:703–709. doi: 10.1016/j.powtec.2013.12.043
  • Padmavathi C, Upadhyaya A, Agrawal D. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy. J Microw Power Electromagn Energy. 2012;46(3):115–127. doi: 10.1080/08327823.2012.11689830
  • Thakur SK, Kong TS, Gupta M. Microwave synthesis and characterization of metastable (Al/Ti) and hybrid (Al/Ti + SiC) composites. Mater Sci Eng A. 2007;452:61–69. doi: 10.1016/j.msea.2006.10.156
  • Chandrakanth RG, Rajkumar K, Aravindan S. Fabrication of copper–TiC–graphite hybrid metal matrix composites through microwave processing. Int J Adv Manuf Tech. 2010;48(5):645–653. doi: 10.1007/s00170-009-2474-0
  • Panda SS, Upadhyaya A, Agrawal D. Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel. Metall Mater Trans A. 2006;37(7):2253–2264. doi: 10.1007/BF02586144
  • Rajkumar K, Aravindan S. Microwave sintering of copper–graphite composites. J Mater Process Technol. 2009;209(15):5601–5605. doi: 10.1016/j.jmatprotec.2009.05.017
  • Rajkumar K, Aravindan S. Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribol Int. 2011;44(4):347–358. doi: 10.1016/j.triboint.2010.11.008
  • Wong WL, Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering. Compo Sci Technol. 2007;67(7):1541–1552. doi: 10.1016/j.compscitech.2006.07.015
  • Ashwath P, Xavior MA. Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys. J Mater Res. 2016;31(9):1201–1219. doi: 10.1557/jmr.2016.131
  • Tun KS, Gupta M. Development of magnesium/(yttria+ nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Comp. 2009;487(1):76–82. doi: 10.1016/j.jallcom.2009.07.117
  • Wong WL, Karthik S, Gupta M. Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route. J Mater Sci. 2005;40(13):3395–3402. doi: 10.1007/s10853-005-0419-z
  • Prabhu G, Chakraborty A, Sarma B. Microwave sintering of tungsten. Int J Refrac Met Hard Mater. 2009;27(3):545–548. doi: 10.1016/j.ijrmhm.2008.07.001
  • Rödiger K, Dreyer K, Gerdes T, et al. Microwave sintering of hardmetals. Int J Refrac Met Hard Mater. 1998;16(4–6):409–416. doi: 10.1016/S0263-4368(98)00050-X
  • Gerdes T, Willert-Porada M, Rödiger K, et al. Microwave reaction sintering of tungsten carbide cobalt hardmetals. MRS Proc. 1996;430. doi:10.1557/PROC-430-175
  • Gerdes T, Whxert-Porada M. Microwave sintering of metal-ceramic and ceramic-ceramic composites. MRS Proc. 1994;347. doi: 10.1557/PROC-347-531
  • Ertugrul O, Park HS, Onel K, et al. Structure and properties of SiC and emery powder reinforced PM 316 l matrix composites produced by microwave and conventional sintering. Powder Metall. 2015;58(1):41–50. doi: 10.1179/1743290114Y.0000000100
  • Ertugrul O, Willert-Porada M, Onel K. The effect of SiCp addition on corrosion and wear behavior of conventionally and microwave sintered PM 316L. Adv Eng Mater. 2017;19(3):1600680. doi: 10.1002/adem.201600680
  • Luo J, Hunyar C, Feher L, et al. Potential advantages for millimeter-wave heating of powdered metals. Int J Infrared Millimeter Waves. 2004;25:1271–1283. doi: 10.1023/B:IJIM.0000045137.68600.13
  • Mahmoud M, Link G, Jelonnek J, et al. Investigation on mm-wave sintering of metal powder compacts using in-situ dilatometry and electrical resistivity measurements. EPJ Web Conf. 2017;149:02007 (2pp). DOI:doi: 10.1051/epjconf/201714902007
  • Srinath MS, Sharma AK, Kumar P. A novel route for joining of austenitic stainless steel (SS-316) using microwave energy. Proc Inst Mech Eng B J Eng Manuf. 2011;225(7):1083–1091. doi: 10.1177/2041297510393451
  • Srinath MS. Joining and characterisation of metallic materials using microwave hybrid heating [PhD thesis]. Roorkee: IIT Roorkee; 2011.
  • Sharma AK, Srinath MS, Kumar P. Microwave joining of metallic materials. Patent application 1994/Del/2009, India. 2009.
  • Bansal A, Sharma AK, Kumar P, et al. Joining of mild steel plates using microwave energy. Adv Mat Res. 2012;585:465–469. doi: 10.4028/www.scientific.net/AMR.585.465
  • Bansal A, Sharma AK, Kumar P, et al. Characterization of bulk stainless steel joints developed through microwave hybrid heating. Mater Charact. 2014;91:34–41. doi: 10.1016/j.matchar.2014.02.005
  • Srinath MS, Sharma AK, Kumar P. Investigation on microstructural and mechanical properties of microwave processed dissimilar joints. J Manuf Process. 2011;13(2):141–146. doi: 10.1016/j.jmapro.2011.03.001
  • Bansal A, Sharma AK, Kumar P, et al. Investigation on microstructure and mechanical properties of the dissimilar weld between mild steel and stainless steel-316 formed using microwave energy. Proc Inst Mech Eng B J Eng Manuf. 2016;230(3):439–448. doi: 10.1177/0954405414558694
  • Badiger RI, Narendranath S, Srinath MS. Joining of inconel-625 alloy through microwave hybrid heating and its characterization. J Manuf Process. 2015;18:117–123. doi: 10.1016/j.jmapro.2015.02.002
  • Bagha L, Sehgal S, Thakur A, et al. Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304. J Manuf Process. 2017;25:290–295. doi: 10.1016/j.jmapro.2016.12.013
  • Gamit D, Mishra RR, Sharma AK. Joining of mild steel pipes using microwave hybrid heating at 2.45 GHz and joint characterization. J Manuf Process. 2017;27:158–168. doi: 10.1016/j.jmapro.2017.04.028
  • Gupta D, Sharma AK. Development and microstructural characterization of microwave cladding on austenitic stainless steel. Surf Coat Tech. 2011;205(21):5147–5155. doi: 10.1016/j.surfcoat.2011.05.018
  • Sharma AK, Gupta D. On microstructure and flexural strength of metal–ceramic composite cladding developed through microwave heating. Appl Surf Sci. 2012;258(15):5583–5592. doi: 10.1016/j.apsusc.2012.02.019
  • Gupta D, Sharma AK. Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear. 2011;271(9):1642–1650. doi: 10.1016/j.wear.2010.12.037
  • Sharma AK, Gupta D. A method of cladding/coating of metallic and nonmetallic powders on metallic substrates by microwave irradiation. Indian Patent 527. 2010
  • Zafar S, Sharma AK. Development and characterisations of WC-12Co microwave clad. Mater Charact. 2014;96:241–248. doi: 10.1016/j.matchar.2014.08.015
  • Zafar S, Sharma AK. On friction and wear behavior of WC-12Co microwave clad. Tribol T. 2015;58(4):584–591. doi: 10.1080/10402004.2014.996310
  • Zafar S, Sharma AK. Dry sliding wear performance of nanostructured WC-12Co deposited through microwave cladding. Tribol Int. 2015;91:14–22. doi: 10.1016/j.triboint.2015.06.023
  • Zafar S, Sharma AK. Investigations on flexural performance and residual stresses in nanometric WC-12Co microwave clads. Surf Coat Tech. 2016;291:413–422. doi: 10.1016/j.surfcoat.2016.03.009
  • Zafar S, Sharma AK. Abrasive and erosive wear behaviour of nanometric WC-12Co microwave clads. Wear. 2016;346:29–45. doi: 10.1016/j.wear.2015.11.003
  • Zafar S, Sharma AK. Structure-property correlations in nanostructured WC-12Co microwave clad. Appl Surf Sci. 2016;370:92–101. doi: 10.1016/j.apsusc.2016.02.114
  • Wong WL, Karthik S, Gupta M. Development of high performance Mg–Al2O3 composites containing Al2O3 in submicron length scale using microwave assisted rapid sintering. Mater Sci Technol. 2005;21(9):1063–1070. doi: 10.1179/174328405X51758
  • Takayama S, Saito Y, Sato M, et al. Sintering behavior of metal powders involving microwave-enhanced chemical reaction. Jpn J Appl Phys. 2006;45(3R):1816–1822. doi: 10.1143/JJAP.45.1816
  • Cheng J, Roy R, Agrawal D. Radically different effects on materials by separated microwave electric and magnetic fields. Mater Res Innov. 2002;5(3–4):170–177. doi: 10.1007/s10019-002-8642-6
  • Chhillar P, Agrawal D, Adair JH. Sintering of molybdenum metal powder using microwave energy. Powder Metall. 2008;51(2):182–187. doi: 10.1179/174329007X178001
  • Mondal A, Agrawal D, Upadhyaya A. Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys. J Microw Power Electromagn Energy. 2010;44(1):28–44. doi: 10.1080/08327823.2010.11689768
  • Takayama S, Link G, Miksch S, et al. Millimetre wave effects on sintering behaviour of metal powder compacts. Powder Metall. 2006;49(3):274–280. doi: 10.1179/174329006X110835
  • Liu W, Ma Y, Zhang J. Properties and microstructural evolution of W-Ni-Fe alloy via microwave sintering. Int J Refract Met Hard Mater. 2012;35:138–142. doi: 10.1016/j.ijrmhm.2012.05.004
  • Shu-dong L, Jian-hong Y, Ying-Li G, et al. Microwave sintering W–Cu composites: analyses of densification and microstructural homogenization. J Alloys Comp. 2009;473(1):L5–L9. doi: 10.1016/j.jallcom.2008.05.038
  • Mahmoud MM, Link G, Thumm M. The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J Alloys Comp. 2015;627:231–237. doi: 10.1016/j.jallcom.2014.11.180
  • Sankaranarayanan S, Shankar VH, Jayalakshmi S, et al. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J Alloys Comp. 2015;627:192–199. doi: 10.1016/j.jallcom.2014.12.009
  • Xiong G, Nie Y, Ji D, et al. Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering. Curr Appl Phys. 2016;16(8):830–836. doi: 10.1016/j.cap.2016.05.004
  • Shi J, Cheng Z, Gelin JC, et al. Sintering of 17-4PH stainless steel powder assisted by microwave and the gradient of mechanical properties in the sintered body. Int J Adv Manuf Tech. 2017;91(5–8):2895–2906. doi: 10.1007/s00170-016-9960-y
  • Xu L, Srinivasakannan C, Zhang L, et al. Fabrication of tungsten–copper alloys by microwave hot pressing sintering. J Alloys Comp. 2016;658:23–28. doi: 10.1016/j.jallcom.2015.10.186
  • Abedinzadeh R, Safavi SM, Karimzadeh F. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite. J Mech Sci Technol. 2016;30(5):1967–1972. doi: 10.1007/s12206-016-0402-4
  • Fujii S, Kawamura S, Mochizuki D, et al. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate. AIP Adv. 2015;5(12):127226. doi: 10.1063/1.4939095
  • Akinwekomi AD, Law WC, Tang CY, et al. Rapid microwave sintering of carbon nanotube-filled AZ61 magnesium alloy composites. Compos Part B Eng. 2016;93:302–309. doi: 10.1016/j.compositesb.2016.03.041
  • Ghasali E, Alizadeh M, Ebadzadeh T, et al. Investigation on microstructural and mechanical properties of B4C–aluminum matrix composites prepared by microwave sintering. J Mater Res Technol. 2015;4(4):411–415. doi: 10.1016/j.jmrt.2015.02.005
  • Ayyappadas C, Muthuchamy A, Annamalai AR, et al. An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite. Adv Powder Technol. 2017;28(7):1760–1768. doi: 10.1016/j.apt.2017.04.013
  • Tamang S, Potaliya P, Aravindan S. Corrosion behaviour of magnesium–yttria composite sintered by microwave hybrid heating. Mater Res Innov. 2017;17:1–5. doi: 10.1080/14328917.2017.1337297
  • Tun KS, Gupta M. Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesium and Mg/Y2O3 nanocomposite. J Alloys Comp. 2008;466(1):140–145. doi: 10.1016/j.jallcom.2007.11.047
  • Tun KS, Gupta M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol. 2007;67(13):2657–2664. doi: 10.1016/j.compscitech.2007.03.006
  • Habibi MK, Hamouda AM, Gupta M. Enhancing tensile and compressive strength of magnesium using ball milled Al + CNT reinforcement. Compos Sci Technol. 2012;72(2):290–298. doi: 10.1016/j.compscitech.2011.11.015
  • Upadhyaya A, Tiwari SK, Mishra P. Microwave sintering of W–Ni–Fe alloy. Scripta Mater. 2007;56(1):5–8. doi: 10.1016/j.scriptamat.2006.09.010
  • Panda SS, Singh V, Upadhyaya A, et al. Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and microwave furnaces. Scripta Mater. 2006;54(12):2179–2183. doi: 10.1016/j.scriptamat.2006.02.034
  • Sethi G, Upadhyaya A, Agrawal D. Microwave and conventional sintering of premixed and prealloyed Cu-12Sn bronze. Sci Sinter. 2003;35(2):49–65. doi: 10.2298/SOS0302049S
  • Roy R, Agrawal DK, Cheng JP. New first principles of microwave-material interaction: discovering the role of the H field and anisothermal reactions. Ceram Trans. 2001;111:471–488.
  • Cheng J, Roy R, Agrawal D. Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites. J Mater Sci Lett. 2001;20(17):1561–1563. doi: 10.1023/A:1017900214477
  • Tun KS, Jayaramanavar P, Nguyen QB, et al. Investigation into tensile and compressive responses of Mg–ZnO composites. Mater Sci Technol. 2012;28(5):582–588. doi: 10.1179/1743284711Y.0000000108
  • Ashwath P, Xavior MA. Effect of ceramic reinforcements on microwave sintered metal matrix composites. Mater Manuf Process. 2016;22:1–6. doi: 10.1080/10426914.2016.1244851
  • Luo J, Hunyar C, Feher L, et al. Theory and experiments of electromagnetic loss mechanism for microwave heating of powdered metals. Appl Phys Lett. 2004;84(25):5076–5078. doi: 10.1063/1.1713032
  • Suzuki M, Ignatenko M, Yamashiro M, et al. Numerical study of microwave heating of micrometer size metal particles. ISIJ Int. 2008;48(5):681–684. doi: 10.2355/isijinternational.48.681
  • Ignatenko M, Tanaka M, Sato M. Absorption of microwave energy by a spherical nonmagnetic metal particle. Jpn J Appl Phys. 2009;48(6R):067001. doi: 10.1143/JJAP.48.067001
  • Demirskyi D, Agrawal D, Ragulya A. Neck formation between copper spherical particles under single-mode and multimode microwave sintering. Mater Sci Eng A. 2010;527(7):2142–2145. doi: 10.1016/j.msea.2009.12.032
  • Demirskyi D, Agrawal D, Ragulya A. Neck growth kinetics during microwave sintering of copper. Scripta Mater. 2010;62(8):552–555. doi: 10.1016/j.scriptamat.2009.12.036
  • Demirskyi D, Agrawal D, Ragulya A. Neck growth kinetics during microwave sintering of nickel powder. J Alloys Comp. 2011;509(5):1790–1795. doi: 10.1016/j.jallcom.2010.10.042
  • Xu F, Li Y, Hu X, et al. In situ investigation of metal’s microwave sintering. Mater Lett. 2012;67(1):162–164. doi: 10.1016/j.matlet.2011.09.052
  • Xu F, Liu W, Xiao Y, et al. High-speed tomography of local-plasma-induced rapid microwave sintering of aluminum. Appl Phys Lett. 2017;110(10):101904. doi: 10.1063/1.4978257
  • Li YC, Xu F, Hu XF, et al. In situ investigation on the mixed-interaction mechanisms in the metal–ceramic system’s microwave sintering. Acta Mater. 2014;66:293–301. doi: 10.1016/j.actamat.2013.11.017
  • Liu W, Xu F, Li Y, et al. Discussion on microwave-matter interaction mechanisms by in situ observation of “core-shell” microstructure during microwave sintering. Materials (Basel). 2016;9(3):120. doi: 10.3390/ma9030120
  • Ghosh S, Pal KS, Dandapat N, et al. Characterization of microwave processed aluminium powder. Ceram Int. 2011;37(3):1115–1119. doi: 10.1016/j.ceramint.2010.10.012
  • Leong Eugene WW, Gupta M. Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering. J Microw Power Electromagn Energy. 2010;44(1):14–27. doi: 10.1080/08327823.2010.11689773
  • Seetharaman S, Subramanian J, Tun KS, et al. Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method. Materials (Basel). 2013;6(5):1940–1955. doi: 10.3390/ma6051940
  • Sun J, Wang W, Yue Q, et al. Review on microwave–metal discharges and their applications in energy and industrial processes. Appl Energy. 2016;175:141–157. doi: 10.1016/j.apenergy.2016.04.091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.