285
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic spheroidisation behaviour of the lamellar Ti–22Al–25Nb alloy during hot compression

, , , &
Pages 961-967 | Received 31 Jul 2017, Accepted 30 Nov 2017, Published online: 19 Dec 2017

References

  • Banerjee D, Gogia AK, Nandy TK, et al. A new ordered orthorhombic phase in a Ti3Al Nb alloy. Acta Metall. 1988;36:871–882. doi: 10.1016/0001-6160(88)90141-1
  • Emura S, Tsuzaki K, Tsuchiya K. Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy. Mater Sci Eng A. 2010;528:355–362. doi: 10.1016/j.msea.2010.09.003
  • Mao Y, Hagiwara M, Emura S. Creep behavior and tensile properties of Mo- and Fe-added orthorhombic Ti–22Al–11Nb–2Mo–1Fe alloy. Scr Mater. 2007;57:261–264. doi: 10.1016/j.scriptamat.2007.03.053
  • Boehlert CJ, Majumdar BS. Eetharaman V. Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb(at.%) orthorhombic+B2 alloy. Intermetallics. 2006;14:412–422. doi: 10.1016/j.intermet.2005.08.006
  • Wang W, Zeng WD, Chen X, et al. Microstructural evolution, creep, and tensile behavior of a Ti–22Al–25Nb (at%) orthorhombic alloy. Mater Sci Eng A. 2014;603:176–184. doi: 10.1016/j.msea.2014.02.004
  • Chen W, Chen ZY, Wu CC, et al. The effect of annealing on microstructure and tensile properties of Ti–22Al–25Nb electron beam weld joint. Intermetallics. 2016;75:8–14. doi: 10.1016/j.intermet.2016.02.006
  • Dey SR, Roy S, Suwas S, et al. Annealing response of the intermetallic alloy Ti–22Al–25Nb. Intermetallics. 2010;18:1122–1131. doi: 10.1016/j.intermet.2010.02.010
  • Jia JB, Zhang KF, Liu LM, et al. Hot deformation behavior and processing map of a powder metallurgy Ti–22Al–25Nb alloy. J Alloy Comp. 2014;600:215–221. doi: 10.1016/j.jallcom.2014.02.116
  • Niu HZ, Chen YF, Zhang DL, et al. Fabrication of a powder metallurgy Ti 2 AlNb-based alloy by spark plasma sintering and associated microstructure optimization. Mater Des. 2016;89:823–829. doi: 10.1016/j.matdes.2015.10.042
  • Lin P, He ZB, Yuan SJ, et al. Instability of the O-phase in Ti–22Al–25Nb alloy during elevated-temperature deformation. J Alloy Comp. 2013;578:96–102. doi: 10.1016/j.jallcom.2013.05.018
  • Emura S, Araoka A, Hagiwara M. B2 grain size refinement and its effect on room temperature tensile properties of a Ti–22Al–27Nb orthorhombic intermetallic alloy. Scr Mater. 2003;48:629–634. doi: 10.1016/S1359-6462(02)00462-1
  • Lütjering G, Williams JC, Gysler A. Microstructure and mechanical properties of Materials. Singapore: World Scientific Publishing Co Pte Ltd.; 2000.
  • Zhang SZ, Zhang CJ, Du ZX, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure. Mater Sci Eng A. 2015;642:16–21. doi: 10.1016/j.msea.2015.06.066
  • Xue C, Zeng WD, Wang W, et al. Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment. Mater Sci Eng A. 2013;573:183–189. doi: 10.1016/j.msea.2013.03.003
  • Semiatin SL, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure. Mater Sci Eng A. 1999;263:257–271. doi: 10.1016/S0921-5093(98)01156-3
  • Semiatin SL, ThomasJr.JF, Dadras P. Processing-microstructure relationships for Ti-6Al-2Sn-4Zr-2Mo-0.1Si. Metall Trans A. 1983;14:2363–2374. doi: 10.1007/BF02663312
  • Wang KX, Zeng WD, Zhao YQ, et al. Dynamic globularization kinetics during hot working of Ti-17 alloy with initial lamellar microstructure. Mater Sci Eng A. 2010;527:2559–2566. doi: 10.1016/j.msea.2010.01.034
  • Xu JW, Zeng WD, Jia ZQ, et al. Static globularization kinetics for Ti-17 alloy with initial lamellar microstructure. J Alloy Comp. 2014;603:239–247. doi: 10.1016/j.jallcom.2014.03.082
  • Zherebtsov S, Murzinova M, Salishchev G, et al. Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater. 2011;59:4138–4150. doi: 10.1016/j.actamat.2011.03.037
  • Ma X, Zeng WD, Xu B, et al. Characterization of the hot deformation behavior of a Ti–22Al–25Nb alloy using processing maps based on the murty criterion. Intermetallics. 2012;20:1–7. doi: 10.1016/j.intermet.2011.08.027
  • Jia JB, Zhang KF, Lu Z. Dynamic globularization kinetics of a powder metallurgy Ti–22Al–25Nb alloy with initial lamellar microstructure during hot compression. J Alloy Comp. 2014;617:429–436. doi: 10.1016/j.jallcom.2014.08.034
  • Li AB, Huang LJ, Meng QY, et al. Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α+β starting structure using processing map. Mater Des. 2009;30:1625–1631. doi: 10.1016/j.matdes.2008.07.031
  • Zeng WD, Shu Y, Zhang XM, et al. Hot workability and microstructure evolution of highly β stabilised Ti–25V–15Cr–0·3Si alloy. Mater Sci Tech. 2008;24:1222–1229. doi: 10.1179/174328407X185884
  • Miller RM, Bieler TR, Semiatin SL. Flow softening during hot working of Ti-6Al-4V with a lamellar colony microstructure. Scr Mater. 1999;40:1387–1393. doi: 10.1016/S1359-6462(99)00061-5
  • Dong XJ, Lu SQ, Zheng HZ. Dynamic spheroidization kinetics behavior of Ti–6.5Al–2Zr–1Mo–1V alloy with lamellar microstructure. Trans Nonferrous Met Soc China. 2016;26:1301–1309. doi: 10.1016/S1003-6326(16)64233-4
  • Zong YY, Wen DS, Liu ZY, et al. Effect of hydrogen on the microstructural evolution of a γ-TiAl based alloy. Mater Lett 2015;142:23–26. doi: 10.1016/j.matlet.2014.11.139
  • Babu B, Lindgren LE. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Inter J Plasticity. 2013;50:94–108. doi: 10.1016/j.ijplas.2013.04.003
  • Li L, Luo J, Yan JJ, et al. Dynamic globularization and restoration mechanism of Ti–5Al–2Sn–2Zr–4Mo–4Cr alloy during isothermal compression. J Alloy Comp. 2015;622:174–183. doi: 10.1016/j.jallcom.2014.10.043
  • Song HW, Zhang SH, Cheng MC. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure. J Alloy Comp. 2009;480:922–927. doi: 10.1016/j.jallcom.2009.02.059
  • He D, Zhu JC, Lai ZH, et al. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy. Mater Des. 2013;46:38–48. doi: 10.1016/j.matdes.2012.09.045
  • Mullins WW. Theory of thermal grooving. J Appl Phys. 1957;28:333–339. doi: 10.1063/1.1722742
  • Sharma G, Ramanujan RV, Tiwari GP. Instability mechanisms in lamellar microstructures. Acta Mater. 2000;48:875–889. doi: 10.1016/S1359-6454(99)00378-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.