309
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure–mechanical property relationship in an Al–Mg alloy processed by constrained groove pressing-cross route

, &
Pages 1003-1017 | Received 24 Aug 2017, Accepted 08 Dec 2017, Published online: 03 Jan 2018

References

  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Lavernia EJ, Han BQ, Schoenung JM. Cryomilled nanostructured materials: processing and properties. Mater Sci Eng A. 2008;493:207–214. doi: 10.1016/j.msea.2007.06.099
  • Khodabakhshi F, Kazeminezhad M, Kokabi AH. Mechanical properties and microstructure of resistance spot welded severely deformed low carbon steel. Mater Sci Eng A. 2011;529:237–245. doi: 10.1016/j.msea.2011.09.023
  • Khodabakhshi F, Kazeminezhad M, Kokabi AH. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: optimization and characterization. Mater Charact. 2012;69:71–83. doi: 10.1016/j.matchar.2012.04.011
  • Khodabakhshi F, Kazeminezhad M, Kokabi A. On the failure behavior of highly cold worked Low carbon steel resistance spot welds. Metall Mater Trans A. 2014;45:1376–1389. doi: 10.1007/s11661-013-2074-3
  • Khodabakhshi F, Kazeminezhad M, Kokabi AH. Metallurgical characteristics and failure mode transition for dissimilar resistance spot welds between ultra-fine grained and coarse-grained low carbon steel sheets. Mater Sci Eng A. 2015;637:12–22. doi: 10.1016/j.msea.2015.04.019
  • Prabu SB, Padmanabhan KA. Chapter 8 - superplasticity in and superplastic forming of aluminum–lithium alloys, aluminum-lithium alloys. Boston (MA): Butterworth-Heinemann; 2014. p. 221–258.
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci. 2008;53:893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Mansourzadeh S, Hosseini M, Salahinejad E, et al. Cu-(B4C)p metal matrix composites processed by accumulative roll-bonding. Prog Nat Sci. 2016;26:613–620. doi: 10.1016/j.pnsc.2016.11.006
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Gupta AK, Maddukuri TS, Singh SK. Constrained groove pressing for sheet metal processing. Prog Mater Sci. 2016;84:403–462. doi: 10.1016/j.pmatsci.2016.09.008
  • Ma ZY. Friction stir processing technology: A review. Metall Mater Trans A. 2008;39:642–658. doi: 10.1007/s11661-007-9459-0
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Mater Charact. 2015;108:102–114. doi: 10.1016/j.matchar.2015.08.016
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214. doi: 10.1016/j.msea.2015.07.001
  • Hansen N, Huang X, Ueji R, et al. Structure and strength after large strain deformation. Mater Sci Eng A. 2004;387–389:191–194. doi: 10.1016/j.msea.2004.02.078
  • Shin DH, Park JJ, Kim YS, et al. Constrained groove pressing and its application to grain refinement of aluminum. Mater Sci Eng A. 2002;328:98–103. doi: 10.1016/S0921-5093(01)01665-3
  • Lee JW, Park JJ. Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement. J Mater Process Technol. 2002;130–131:208–213. doi: 10.1016/S0924-0136(02)00722-7
  • Peng K, Zhang Y, Shaw LL, et al. Microstructure dependence of a Cu–38Zn alloy on processing conditions of constrained groove pressing. Acta Mater. 2009;57:5543–5553. doi: 10.1016/j.actamat.2009.07.049
  • Khodabakhshi F, Abbaszadeh M, Eskandari H, et al. Application of CGP-cross route process for microstructure refinement and mechanical properties improvement in steel sheets. J Manuf Processes. 2013;15:533–541. doi: 10.1016/j.jmapro.2013.08.001
  • Khakbaz F, Kazeminezhad M. Strain rate sensitivity and fracture behavior of severely deformed Al–Mn alloy sheets. Mater Sci Eng A. 2012;532:26–30. doi: 10.1016/j.msea.2011.10.057
  • Khodabakhshi F, Kazeminezhad M, Kokabi AH. Constrained groove pressing of low carbon steel: nano-structure and mechanical properties. Mater Sci Eng A. 2010;527:4043–4049. doi: 10.1016/j.msea.2010.03.005
  • Salvati E, Zhang H, Fong KS, et al. Fatigue and fracture behaviour of AZ31b Mg alloy plastically deformed by constrained groove pressing in the presence of overloads. Procedia Structural Integrity. 2016;2:3772–3781. doi: 10.1016/j.prostr.2016.06.469
  • Satheesh Kumar SS, Raghu T. Tensile behaviour and strain hardening characteristics of constrained groove pressed nickel sheets. Mater Des. 2011;32:4650–4657. doi: 10.1016/j.matdes.2011.03.081
  • Khodabakhshi F, Haghshenas M, Eskandari H, et al. Hardness−strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing. Mater Sci Eng A. 2015;636:331–339. doi: 10.1016/j.msea.2015.03.122
  • Khakbaz F, Kazeminezhad M. Work hardening and mechanical properties of severely deformed AA3003 by constrained groove pressing. J Manuf Processes. 2012;14:20–25. doi: 10.1016/j.jmapro.2011.07.001
  • Rafizadeh E, Mani A, Kazeminezhad M. The effects of intermediate and post-annealing phenomena on the mechanical properties and microstructure of constrained groove pressed copper sheet. Mater Sci Eng A. 2009;515:162–168. doi: 10.1016/j.msea.2009.03.081
  • Satheesh Kumar SS, Raghu T. Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets. J Mater Process Technol. 2013;213:214–220. doi: 10.1016/j.jmatprotec.2012.09.012
  • Khodabakhshi F, Kazeminezhad M. The annealing phenomena and thermal stability of severely deformed steel sheet. Mater Sci Eng A. 2011;528:5212–5218. doi: 10.1016/j.msea.2011.03.024
  • Khodabakhshi F, Kazeminezhad M. The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel. Mater Des. 2011;32:3280–3286. doi: 10.1016/j.matdes.2011.02.032
  • Khodabakhshi F, Kazeminezhad M. Differential scanning calorimetry study of constrained groove pressed low carbon steel: recovery, recrystallisation and ferrite to austenite phase transformation. Mater Sci Technol. 2014;30:765–773. doi: 10.1179/1743284713Y.0000000388
  • Khodabakhshi F, Abbaszadeh M, Mohebpour S, et al. 3D finite element analysis and experimental validation of constrained groove pressing–cross route as an SPD process for sheet form metals. Int J Adv Manuf Technol. 2014;73:1291–1305. doi: 10.1007/s00170-014-5919-z
  • Benedyk JC. Aluminum alloys for lightweight automotive structures A2 - Mallick, P.K, materials, design and manufacturing for lightweight vehicles. Cambridge: Woodhead Publishing; 2010. p. 79–113.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of post-annealing on the microstructure and mechanical properties of friction stir processed Al–Mg–TiO2 nanocomposites. Mater Des. 2014;63:30–41. doi: 10.1016/j.matdes.2014.05.065
  • Easton M, Stjohn D. Grain refinement of aluminum alloys: part I. the nucleant and solute paradigms – a review of the literature. Metall Mater Trans A. 1999;30:1613–1623. doi: 10.1007/s11661-999-0098-5
  • Chen W, Yang K, Huang Y. Effect of constrained conditions on the equivalent strain and microstructure of 5052 Al alloy deformed by groove pressing. Mater Sci Forum. 2013;762:374–381. doi: 10.4028/www.scientific.net/MSF.762.374
  • Thangapandian N, Balasivanandha Prabu S, Padmanabhan KA. Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening. Mater Sci Eng A. 2016;649:229–238. doi: 10.1016/j.msea.2015.09.051
  • Thangapandian N, Balasivanandha Prabu S, Padmanabhan KA. Effect of temperature and velocity of pressing on grain refinement in AA5083 aluminum alloy during repetitive corrugation and straightening process. Metall Mater Trans A. 2016;47:6374–6383. doi: 10.1007/s11661-016-3811-1
  • Hall EO. Yield point phenomena in metals and alloys. New York (NY): Plenum Press; 1970. p. 171–200
  • Khodabakhshi F, Simchi A, Kokabi A, et al. Strain rate sensitivity, work hardening, and fracture behavior of an Al-Mg TiO2 nanocomposite prepared by friction stir processing. Metall Mater Trans A. 2014;45:4073–4088. doi: 10.1007/s11661-014-2330-1
  • Shirdel A, Khajeh A, Moshksar MM. Experimental and finite element investigation of semi-constrained groove pressing process. Mater Des. 2010;31:946–950. doi: 10.1016/j.matdes.2009.07.035
  • Scardi P, Leoni M, Delhez R. Line broadening analysis using integral breadth methods: a critical review. J Appl Crystallogr. 2004;37:381–390. doi: 10.1107/S0021889804004583
  • Jiang HG, Rühle M, Lavernia EJ. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J Mater Res. 1999;14:549–559. doi: 10.1557/JMR.1999.0079
  • Zhang Z, Zhou F, Lavernia EJ. On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction. Metall Mater Trans A. 2003;34(A):1349–1355. doi: 10.1007/s11661-003-0246-2
  • He J, Ye J, Lavernia EJ, et al. Quantitative analysis of grain size in bimodal powders by x-ray diffraction and transmission electron microscopy. J Mater Sci. 2004;39:6957–6964. doi: 10.1023/B:JMSC.0000047538.95825.ad
  • Kurmanaeva L, Topping TD, Wen H, et al. Strengthening mechanisms and deformation behavior of cryomilled Al–Cu–Mg–Ag alloy. J Alloys Compd. 2015;632:591–603. doi: 10.1016/j.jallcom.2015.01.160
  • Asgharzadeh H, Kim HS, Simchi A. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy. Mater Charact. 2013;75:108–114. doi: 10.1016/j.matchar.2012.10.007
  • Hansen N. Hall–Petch relation and boundary strengthening. Scr Mater. 2004;51:801–806. doi: 10.1016/j.scriptamat.2004.06.002
  • Asgharzadeh H, Simchi A, Kim HS. Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater Sci Eng A. 2011;528:3981–3989. doi: 10.1016/j.msea.2011.01.082
  • Ko YG, Shin DH, Park KT, et al. An analysis of the strain hardening behavior of ultra-fine grain pure titanium. Scr Mater. 2006;54:1785–1789. doi: 10.1016/j.scriptamat.2006.01.034
  • Hu CM, Lai CM, Kao PW, et al. Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing. Mater Charact. 2010;61:1043–1053. doi: 10.1016/j.matchar.2010.06.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.