363
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

On pinning effect of austenite grain growth in Mg-containing low-carbon steel

, ORCID Icon, , &
Pages 596-606 | Received 29 Sep 2017, Accepted 19 Dec 2017, Published online: 16 Jan 2018

References

  • Kojima A, Kiyose A, Uemori R. Super high HAZ toughness technology with fine microstructure imparted by fine particles. Nippon Steel Technical Report. 2004;90:2–6.
  • Chen Z, Leretto MH, Cochrance RC. Nature of large precipitates in titanium-containing HSLA steels. Mater Sci Tech. 1987;3:836–844. doi: 10.1179/mst.1987.3.10.836
  • Yan W, Shan Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels. Metal Mater Trans A. 2006;37:2147–2158. doi: 10.1007/BF02586135
  • Prikryl M, Kroupa A, Weatherly GC, et al. Precipitation behavior in a medium carbon Ti-VN microalloyed steel. Metal Mater Trans A. 1996;27:1149–1165. doi: 10.1007/BF02649854
  • Kojima A, Kiyose A, Uemori R. Development of high HAZ toughness steel plates for box columns with high heat input welding. Nippon Steel Technical Report. 2004;90:39–44.
  • Gregg J, Bhadeshia H. Solid-state nucleation of acicular ferrite on minerals added to molten steel. Acta Mater. 1997;45:739–748. doi: 10.1016/S1359-6454(96)00187-5
  • Shim J-H, Cho YW, Chung SH, et al. Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Mater. 1999;47:2751–2760. doi: 10.1016/S1359-6454(99)00114-7
  • Shim J, Cho Y, Chung S, Shim J, Lee D. Intragranular ferrite nucleation and grain refinement of Ti-containing low carbon steels. Kor J Inst Met Mater. 1998;36:1993–2002.
  • Lee J, Pan Y. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int. 1995;35:1027–1033. doi: 10.2355/isijinternational.35.1027
  • Zhang Z, Farrar R. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals. Mater Sci. Technol. 1996;12:237–260. doi: 10.1179/mst.1996.12.3.237
  • Sha Q, Sun Z. Grain growth behavior of coarse-grained austenite in a Nb–V–Ti microalloyed steel. Mater Sci Eng A. 2009;523:77–84. doi: 10.1016/j.msea.2009.05.037
  • Suito H, OHTA H, Morioka S. Refinement of solidification microstructure and austenite grain by fine inclusion particles. ISIJ int. 2006;46:840–846. doi: 10.2355/isijinternational.46.840
  • Chapa M, Medina SF, López V, et al. Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures. ISIJ Int. 2002;42:1288–1296. doi: 10.2355/isijinternational.42.1288
  • Moon J, Lee J, Lee C. Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater Sci Eng A. 2007;459:40–46. doi: 10.1016/j.msea.2006.12.073
  • Wang X, Wu K, Huang G, et al. In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels. Int J Min Met Mater. 2014;21:878–885. doi: 10.1007/s12613-014-0984-8
  • Du S, Li Y, Zheng Yi. Kinetics of austenite grain growth during heating and its influence on hot deformation of LZ50 steel. J Mater Eng Perform. 2016;25:2661–2669. doi: 10.1007/s11665-016-2162-9
  • Roy S, Charkabarti D, Dey GK. Austenite grain structures in Ti- and Nb-containing high-strength low-alloy steel during slab reheating. Metall Mater Trans A. 2013;44:717–728. doi: 10.1007/s11661-012-1409-9
  • Maropoulos S, Karagiannis E, Ridley E. Factors affecting prior austenite grain size in low alloy steel. J Mater Sci. 2007;42:1309–1320. doi: 10.1007/s10853-006-1191-4
  • Wang L, Parker S, Rose A, et al. Effects of solute Nb atoms and Nb precipitates on isothermal transformation kinetics from austenite to ferrite. Metall Trans A. 2016;47:3387–3396. doi: 10.1007/s11661-016-3548-x
  • Ohno M, Yamaguchi T, Mastsuura K, et al. Suppression of coarse columnar grain formation in as-cast austenite structure of a hyperperitectic carbon steel by Nb addition. ISIJ Int. 2011;51:1831–1837. doi: 10.2355/isijinternational.51.1831
  • García C, Caballero F, Capdevila C, et al. Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater Charact. 2002;49:121–127. doi: 10.1016/S1044-5803(03)00002-0
  • Weygand D, Bréchet Y, Lépinoux J. Zener pinning and grain growth: a two-dimensional vertex computer simulation. Acta Mater. 1999;47:961–970. doi: 10.1016/S1359-6454(98)00383-8
  • Kad B, Hazzledine P. Monte Carlo simulations of grain growth and Zener pinning. Mater Sci Eng A. 1997;238:70–77. doi: 10.1016/S0921-5093(97)00435-8
  • Gao J, Thompson G, Patterson B. Computer simulation of grain growth with second phase particle pining. Acta Mater. 1997;45:3653–3658. doi: 10.1016/S1359-6454(97)00048-7
  • Miodownik M, Martin JW, Cerzo A. Mesoscale simulations of particle pinning. Philos Mag A. 1999;79:203–222. doi: 10.1080/01418619908214284
  • Moelans N, Blanpain B, Wollants P. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase filed simulations. Acta Mater. 2007;55:2173–2182. doi: 10.1016/j.actamat.2006.11.018
  • Martin J. Precipitation hardening: quantitative metallography. Woburn: A division of Reed Educational and Professional Publishing Ltd; 1998.
  • Feng C, Yang C, Hang S, et al. Effect of magnesium on inclusion formation in Ti-killed steels and microstructural evolution in welding induced coarse-grained heat affected zone. J Iron Steel Res Int. 2009;16:69–74. doi: 10.1016/S1006-706X(09)60013-3
  • Kim H, Chang C, Lee H. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels. Scripta Mater. 2005;53:1253–1258. doi: 10.1016/j.scriptamat.2005.08.001
  • Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels. Metall Mater Trans B. 2001;32:79–85. doi: 10.1007/s11663-001-0010-1
  • He Y, Wang F, Li C, et al. Effect of Mg content on the hot ductility of wrought Fe-36Ni alloy with Ti addition. Mater Sci Eng A. 2016;673:99–107. doi: 10.1016/j.msea.2016.07.070
  • Burke J, Turnbull D. Recrystallization and grain growth. Process Metal Physics. 1952;3:220–292. doi: 10.1016/0502-8205(52)90009-9
  • Vynokur B. Influence of alloying on the free energy of austenitic grain boundary in steel. Mater Sci. 1996;32:448–455. doi: 10.1007/BF02538970

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.