574
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Editorial

References

  • Bhadeshia HKDH, Honeycombe RWK. Steels: microstructure and properties. 4th ed. London: Elsevier; 2017.
  • Li Y, Raabe D, Herbig M, et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys. Rev. Lett.. 2014;113:106104. doi: 10.1103/PhysRevLett.113.106104
  • Djaziri S, Li Y, Nemtollahi G, et al. Deformation-induced martensite: a new paradigm for exceptional steels. Adv Mater. 2016;28:7753–7757. doi: 10.1002/adma.201601526
  • Snoek JL. Effects of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica. 1941;8:711–713. doi: 10.1016/S0031-8914(41)90517-7
  • Snoek JL. Tetragonal martensite and elastic after effect in iron. Physica. 1942;9:862–864. doi: 10.1016/S0031-8914(42)80061-0
  • Cohen M, Olson GB, Clapp PC. On the classification of displacive transformations (what is martensite?). In: Olson GB, Cohen M, editors. International conference on martensitic transformations ICOMAT ‘79. Boston (Massachusetts USA): Alpine Press; 1979. p. 1–11.
  • Yamasaki S. The microstructure and mechanical properties of drawn and aged pearlitic steel wires. Mater Sci Technol. 2018;34(1):1–11. doi: 10.1080/02670836.2017.1407542
  • Johnson WH. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. Proc Roy Soc London. 1875;23:168–179. doi: 10.1098/rspl.1874.0024
  • Minoshima K, Nakatani M, Sugeta A, et al. Influence of internal hydrogen state on the fatigue behavior in cold-drawn high-strength steel. Trans Japan Soc Mech Eng A. 2017;73:119–124.
  • Qin RS, Samuel EI, Bhowmik A. Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels. J Mater Sci. 2011;46:2838–2842. doi: 10.1007/s10853-010-5155-3
  • Qin RS, Rahnama A, Lu WJ, et al. Electropulsed steels. Mater Sci Technol. 2014;30:1040–1044. doi: 10.1179/1743284714Y.0000000533
  • Qin RS. Critical assessment 8: outstanding issues in electropulsing processing. Mater Sci Technol. 2015;31:203–206. doi: 10.1179/1743284714Y.0000000630
  • Rahnama A, Qin RS. Electropulse-induced microstructural evolution in a ferritic– pearlitic 0.14% C steel. Scr Mater. 2015;96:17–20. doi: 10.1016/j.scriptamat.2014.10.008
  • Rahnama A, Qin RS. The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel. Mater Sci Eng A.. 2015;627:145–152. doi: 10.1016/j.msea.2014.12.084
  • B. Eliott-Bowman: Electropulsing of pearlitic steels [Ph.D. thesis]. London, Imperial College London;2016.
  • Qin RS. Using electric current to surpass the microstr-ucture breakup limit. Sci Reports. 2017;7:41451. doi: 10.1038/srep41451
  • Qin R, Luo Y, Elliott-Bowman B, et al. Fabrication of nanostructured pearlite steel wires using electropulsing. Mater Sci Technol. 2018;34 (1):29–34. doi: 10.1080/02670836.2017.1327563
  • Bolling GF, Richman RH. Forced velocity pearlite. Metall Trans. 1970;1:2095–2104. doi: 10.1007/BF02643420
  • Chadwick GA, Edmonds DV. Applications in ferrous metallugy. Special Report, Chemical Metallurgy. London: Iron and Steel Institute; 1972;146.
  • Mellor BG, Edmonds DV. Unidirectional transformation of Fe-0.8C-Co alloys: part I. process–structure relationships and the significance of pearlite interlamellar spacing measurements. Metall Trans A. 1977;8:763–771. doi: 10.1007/BF02664786
  • McLean M. Directionally solidified materials for high temperature service. London: Metals Society; 1983.
  • Zhou DS, Shiflet GJ. Ferrite: cementite crystallography in pearlite. Metall Trans A. 1992;23:1259–1269. doi: 10.1007/BF02665057
  • Durgaprasad A, Giri S, Lenka S, et al. Defining a relationship between pearlite morphology and ferrite crystallographic orientation. Acta Mater. 2017;129:278–289. doi: 10.1016/j.actamat.2017.02.008
  • Fang F, Wang L, Zhou L, et al. Application of texture inheritance on manufacturing ultra-high strength pearlitic steel wire. Mater Sci Technol. 2018;34; doi:10.1080/02670836.2017.1393999.
  • Zhao TZ, Song HW, Zhang SH. Non-monotonic radial distribution of tensile yielding strength in cold drawn pearlitic wire. Mater Sci Technol. 2018;34(1):35–41. doi: 10.1080/02670836.2017.1352642
  • Chance J, Ridley N. Chromium partitioning during isothermal transformation of a eutectoid steel. Metall Trans A. 1981;12A:1205–1213. doi: 10.1007/BF02642334
  • Tu Y, Huang L, Zhang Q, et al. Effect of Si on the partitioning of Mn between cementite and ferrite in pearlite steel. Mater Sci Technol. 2018;34; doi:10.1080/02670836.2017.1407558.
  • Bhadeshia HKDH. Anomalies in carbon concentration determinations from nanostructured bainite. Mater Sci Technol. 2015;31:758–763. doi: 10.1179/1743284714Y.0000000655
  • Zhang GH, Enomoto M. Influence of magnetic field on isothermal pearlite transformation in Fe–C–Ni hypoeutectoid alloy. Mater Sci Technol. 2013;26:269–275. doi: 10.1179/174328409X453235
  • Xin R, Wu KM, Zhang GH, et al. Effect of high magnetic field on the pearlite transformation of Al-containing. Mater Sci Technol. 2018;34; doi:10.1080/02670836.2017.1410359.
  • Jaramillo RA, Babu SS, Ludtka GM, et al. Effect of 30 tesla magnetic field on transformations in a novel bainitic steel. Scr Mater. 2004;52:461–466. doi: 10.1016/j.scriptamat.2004.11.015
  • Yasuda Y, Ohashi T, Shimokawa T, et al. Strain-hardening characteristics of ferrite layers in pearlite microstructure. Mater Sci Technol. 2018;34; DOI:10.1080/02670836.2017.1397941.
  • Liu C, Shao Z, Liu Y, et al. Friction layers produced in two steels during laboratory friction testing. Mater Sci Technol. 2006;22:110–114. doi: 10.1179/174328406X79261
  • Durgaprasad A, Giri S, Lenka S, et al. Microstructures and mechanical properties of as-drawn and laboratory annealed pearlitic steel wires. Metall Mater Trans A. 2017;48:4583–4597. doi: 10.1007/s11661-017-4269-5
  • Omoigiade O, Haldar A, Qin R. Macroscopic characterization of mechanical properties in electric current treated dry drawn high strength wires. MRS Adv. 2017;2:963–974. doi: 10.1557/adv.2017.182
  • Gladman T, McIvor ID, Pickering FB. Some aspects of the structure–property relationships in high-C ferrite-pearlite steels. J Iron Steel Inst. 1972;210:916–930.
  • Hillert M. The formation of pearlite. In: VF Zackay, HI Aaronson, editor. Decomposition of austenite by diffusional processes. New York (NY): Interscience; 1962. p. 197–237.
  • F. B. Pickering: The effect of composition and microst-ructure on ductility and toughness, In: Towards impro-ved ductility and toughness. Tokyo: Climax Molybdenum Development Company (Japan) Ltd., 1971:9–32.
  • Mishra K, Singh A. Effect of interlamellar spacing on fracture toughness of nano-structured pearlite. Mater Sci Eng A. 2017;706:22–26. doi: 10.1016/j.msea.2017.08.115

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.