7,834
Views
264
CrossRef citations to date
0
Altmetric
Review

A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium

Pages 895-916 | Received 12 Jan 2018, Accepted 16 Mar 2018, Published online: 08 Apr 2018

References

  • Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573–1587. doi: 10.1016/j.jclepro.2016.04.150
  • Thompson MK, Moroni G, Vaneker T, et al. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann – Manuf Technol [Internet]. 2016;65(2):737–760. doi: 10.1016/j.cirp.2016.05.004
  • Labonnote N, Rønnquist A, Manum B, et al. Additive construction: state-of-the-art, challenges and opportunities. Autom Constr [Internet]. 2016;72:347–366. doi: 10.1016/j.autcon.2016.08.026
  • Gao W, Zhang Y, Ramanujan D, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Des [Internet]. 2015;69:65–89. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0010448515000469.
  • TWI-global [Internet]. [cited 2018 Jan 22]. Available from: https://www.twi-global.com/technical-knowledge/best-practiceguides/%0Aarc-welding-aluminium-section-2-process-and-consumables-selection/
  • Xu W, Gottos M, Roe M, et al. Impact tests on welded joints in 6000 series aluminium alloy extrusion for rail vehicles, Cambridge. 2008.
  • Baker R. Method of making decorative articles. United States patent [Internet]. 1920:1–3. Available from: https://drive.google.com/viewerng/viewer?url=patentimages.storage.googleapis.com/pdfs/US1533300.pdf.
  • Shockey H. Machine for reclaiming worn brake drums [Internet]. United Staets patent US1886503A. 1930: 1–3. Available from: https://patents.google.com/patent/US1886503A/en?q=MACHINE&q=FOR&q=RECLAIMING&q=WORN&q=BRAKE+DRUMS&oq=MACHINE+FOR+RECLAIMING+WORN+BRAKE+DRUMS
  • Ujiie A. United States Patent. 1971; Available from: https://www.google.com/patents/US3558846?dq=ujiie+1971&hl=en&sa=X&ei=nmwQVMyECsGzuASw3oHYAw&ved=0CB0Q6AEwAA
  • Ujiie A. Process and apparatus for tripple-electrode MIG welding using short-circuit and spray-arc deposition. United States patent US3746833A. 1972;2–7.
  • Kussmaul K, Schoch FW, Luckow H. High quality large components ‘shape welded’ by a SAW process. Weld J. 1983;62(9):17–24.
  • Dickens PM, Pridham MS, Cobb RC, et al. Rapid prototyping using 3-D welding. Proceedings of the 3rd symposium solid freedom fabrication. Austin (TX); 1992. p. 280–290.
  • Ribeiro F. Metal based rapid prototyping for more complex shapes. Biennial international conference on “Computer Technology In Welding” [Internet]. Cambridge: The Welding Institute; 1996. p. 1–11. Available from: http://hdl.handle.net/1822/3119
  • Zhang YM, Li P, Chen Y, et al. Automated system for welding-based rapid prototyping. Mechatronics (Oxf). 2002;12(1):37–53. doi: 10.1016/S0957-4158(00)00064-7
  • Colegrove PA, Martina F, Roy MJ, et al. High pressure interpass rolling of wire + arc additively manufactured titanium components. Adv Mater Res [Internet]. 2014;996:694–700. Available from: http://www.scientific.net/AMR.996.694 doi: 10.4028/www.scientific.net/AMR.996.694
  • Martina F, Williams SW, Colegrove P. Improved microstructure and increased mechanical properties of additive manufacture produced Ti-6Al-4V by interpass cold rolling. SFF Symp [Internet]. 2013: 490–496. Available from: http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-38-Martina.pdf
  • Donoghue J, Antonysamy AA, Martina F, et al. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V. Mater Charact [Internet]. 2016;114:103–114. doi: 10.1016/j.matchar.2016.02.001
  • Martina F, Colegrove PA, Williams SW, et al. Microstructure of interpass rolled wire + arc additive manufacturing Ti-6Al-4V components. Metall Mater Trans A Phys Metall Mater Sci. 2015;46(12):6103–6118. doi: 10.1007/s11661-015-3172-1
  • Song Y-A, Park S, Chae S-W. 3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach. Int J Mach Tools Manuf [Internet]. 2005;45(9):1063–1069. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0890695504003086. doi: 10.1016/j.ijmachtools.2004.11.022
  • Nobel P. Method and apparatus for electric arc welding. United States patent US1898060A. 1919;1–12.
  • Carpenter O, Kerr H. Method and apparatus for metal coating metal pipes by electric fusion. United States patent US2427350A. 1943;1–10.
  • White W. Pressure roller and method of manufacture. United States patent. US3156968A. 1962;2–5.
  • Brandi H, Luckow H. Method of making large structural one-piece parts of metal, particularly one-piece shafts. United States patent US3985995A. 1976;1–8.
  • Hitoshi T. Production of powder of metal or nonmetal or alloy thereof. European patent office JP19830003867 19830113. 1984;59129702(c):5–6.
  • Ayres P, Edmonds D, Hartwig D, et al. Method and apparatus for controlling weld bead shape to eliminate microfissure defects when shape melting austenitic materials. United States patent US4782206A. 1987;1–10.
  • Doyle T, Ryan P. Method and apparatus for automatic vapor cooling when shape melting a component. United States patent US4857694A. 1988;1–7.
  • Muscato G, Spampinato G, Cantelli L. A closed loop welding controller for a rapid manufacturing process. IEEE Int Conf Emerg Technol Fact Autom ETFA. 2008;1080–1083.
  • Irving R. An all electroslag welded vessel. Iron Age. 1970;205(5).
  • Mehnen J, Ding J, Lockett H, et al. Design for wire and arc additive layer manufacture. Glob Prod Dev [Internet]. 2011: 721–727. Available from: http://link.springer.com/10.1007/978-3-642-15973-2. doi: 10.1007/978-3-642-15973-2_73
  • Kazanas P, Deherkar P, Almeida P, et al. Fabrication of geometrical features using wire and arc additive manufacture. Proc Inst Mech Eng Part B J Eng Manuf. 2012;226(6):1042–1051. doi: 10.1177/0954405412437126
  • Mehnen J, Ding J, Lockett H, et al. Design study for wire and arc additive manufacture. Int J Prod Dev [Internet]. 2014;19(1/2/3):2. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84898941604&partnerID=tZOtx3y1. doi: 10.1504/IJPD.2014.060028
  • Ding D, Pan Z, Cuiuri D, et al. A tool-path generation strategy for wire and arc additive manufacturing. Int J Adv Manuf Technol. 2014;73(1–4):173–183. doi: 10.1007/s00170-014-5808-5
  • Newman ST, Zhu Z, Dhokia V, et al. Process planning for additive and subtractive manufacturing technologies. CIRP Ann - Manuf Technol [Internet]. 2015;64(1):467–470. doi: 10.1016/j.cirp.2015.04.109
  • Venturini G, Montevecchi F, Scippa A, et al. Optimization of WAAM deposition patterns for T-crossing features. Procedia CIRP [Internet]. 2016;55:95–100. DOI:doi: 10.1016/j.procir.2016.08.043.
  • Ding D, Pan Z, Cuiuri D, et al. Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. J Clean Prod [Internet]. 2016;133(June):942–952. doi: 10.1016/j.jclepro.2016.06.036
  • Adinarayanappa SM, Simhambhatla S. Determination of process parameter for twin-wire weld-deposition based additive manufacturing. ASME 2014 International design engineering technical conferences and Compture and Information in engineering conference IDETC/CIE 2014. Buffalo (NY): ASME; 2014. p. V004T06A003–V004T06A003.
  • Yang D, Wang G, Zhang G. A comparative study of GMAW- and DE-GMAW-based additive manufacturing techniques: thermal behavior of the deposition process for thin-walled parts. Int J Adv Manuf Technol [Internet]. 2017;91(5–8):2175–2184. doi: 10.1007/s00170-016-9898-0
  • Somashekara MA, Suryakumar S. Studies on dissimilar twin-wire weld-deposition for additive manufacturing applications. Trans Indian Inst Met. 2017;70(8):2123–2135. doi: 10.1007/s12666-016-1032-3
  • Yang D, He C, Zhang G. Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing. J Mater Process Tech [Internet]. 2016;227:153–160. doi: 10.1016/j.jmatprotec.2015.08.021
  • Li F, Chen S, Shi J, et al. Evaluation and optimization of a hybrid manufacturing process combining wire arc additive manufacturing with milling for the fabrication of stiffened panels. Appl Sci [Internet]. 2017;7(12):1233. Available from: http://www.mdpi.com/2076-3417/7/12/1233. doi: 10.3390/app7121233
  • Prado-Cerqueira JL, Diéguez JL, Camacho AM. Preliminary development of a wire and arc additive manufacturing system (WAAM). Procedia Manuf [Internet]. 2017;13:895–902. doi: 10.1016/j.promfg.2017.09.154
  • Qi Z, Cong B, Qi B, et al. Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys. J Mater Process Technol [Internet]. 2018;255:347–353. doi: 10.1016/j.jmatprotec.2017.12.019
  • Mughal MP, Mufti RA, Fawad H. The mechanical effects of deposition patterns in welding-based layered manufacturing. Proc Inst Mech Eng Part B J Eng Manuf [Internet]. 2007;221(10):1499–1509. doi: 10.1243/09544054JEM783
  • Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci [Internet]. 2011;50(12):3315–3322.
  • Williams SW, Martina F, Addison AC, et al. Wire + Arc additive manufacturing. Mater Sci Technol [Internet]. 2016;32(7):641–647. doi: 10.1179/1743284715Y.0000000073
  • Somashekara MA, Naveenkumar M, Kumar A, et al. Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. Int J Adv Manuf Technol [Internet]. 2017;90(5–8):2009–2025. doi: 10.1007/s00170-016-9510-7
  • Colegrove PA, Donoghue J, Martina F, et al. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scr Mater [Internet]. 2017;135(November):111–118. doi: 10.1016/j.scriptamat.2016.10.031
  • Szost BA, Terzi S, Martina F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Des. 2016;89:559–567. doi: 10.1016/j.matdes.2015.09.115
  • Xiong J, Zhang G. Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol [Internet]. 2014;214(4):962–968. doi: 10.1016/j.jmatprotec.2013.11.014
  • Xiong J, Zhang G, Zhang W. Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing. Int J Adv Manuf Technol. 2015;80(9–12):1767–1776. doi: 10.1007/s00170-015-7112-4
  • Ding D, Pan Z, Cuiuri D, et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robot Comput Integr Manuf [Internet]. 2015;31:101–110. doi: 10.1016/j.rcim.2014.08.008
  • Geng H, Li J, Xiong J, et al. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26(2):621–629. doi: 10.1007/s11665-016-2480-y
  • Xiong J, Yin Z, Zhang W. Forming appearance control of arc striking and extinguishing area in multi-layer single-pass GMAW-based additive manufacturing. Int J Adv Manuf Technol. 2016;87(1–4):579–586. doi: 10.1007/s00170-016-8543-2
  • Xiong J, Lei Y, Chen H, et al. Fabrication of inclined thin-walled parts in multi-layer single-pass GMAW-based additive manufacturing with flat position deposition. J Mater Process Technol [Internet]. 2017;240(May 2017):397–403. doi: 10.1016/j.jmatprotec.2016.10.019
  • Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol [Internet]. 2013;213(10):1782–1791. doi: 10.1016/j.jmatprotec.2013.04.012
  • Martina F, Roy M, Colegrove P., et al. Residual stress reduction in high pressure interpass rolled wire+arc additive manufacturing Ti-6Al-4V components. Solid freeform fabrication proceedings. Austin (TX); 2014. p. 89–94.
  • Honnige J, Williams S, Roy M, et al. Residual Stress Characterization and Control in the Additive Manufacture of Large Scale Metal Structures. Material research proceedings [Internet]. 2016. p. 455–460. Available from: http://www.mrforum.com/product/9781945291173-77
  • Gu J, Ding J, Williams SW, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy. Mater Sci Eng A [Internet]. 2016;651:18–26. doi: 10.1016/j.msea.2015.10.101
  • Gu J, Ding J, Williams SW, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J Mater Process Technol. 2016;230:26–34. doi: 10.1016/j.jmatprotec.2015.11.006
  • Gu J, Wang X, Bai J, et al. Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling. Mater Sci Eng A [Internet]. 2018;712(August 2017):292–301. doi: 10.1016/j.msea.2017.11.113
  • Almeida P, Williams S. Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT). Solid Free Fabr Symp. 2010;(June):25–36.
  • Wagiman A, Bin Wahab MS, Mohid Z, et al. Effect of GMAW-CMT heat input on weld bead profile geometry for freeform fabrication of aluminium parts. Appl Mech Mater [Internet]. 2013;465–466:1370–1374. Available from: http://www.scientific.net/AMM.465-466.1370. doi: 10.4028/www.scientific.net/AMM.465-466.1370
  • Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol. 2014;76(9–12):1593–1606. doi: 10.1007/s00170-014-6346-x
  • Cong B, Ouyang R, Qi B, et al. Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Met Mater Eng [Internet]. 2016;45(3):606–611. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1875537216300807. doi: 10.1016/S1875-5372(16)30080-7
  • Cong B, Qi Z, Qi B, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process. Appl Sci [Internet]. 2017;7(3):275. Available from: http://www.mdpi.com/2076-3417/7/3/275. doi: 10.3390/app7030275
  • Zhang C, Li Y, Gao M, et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A [Internet]. 2018;711(November 2017):415–423. doi: 10.1016/j.msea.2017.11.084
  • Wang F, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V. Metall Mater Trans A [Internet]. 2013 Feb 28 [cited 2018 Mar 1];44(2):968–977. Available from: http://link.springer.com/10.1007/s11661-012-1444-6.
  • Zhang J, Wang X, Paddea S, et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress. Mater Des [Internet]. 2016;90:551–561. doi: 10.1016/j.matdes.2015.10.141
  • Zhang J, Zhang X, Wang X, et al. Crack path selection at the interface of wrought and wire+arc additive manufactured Ti–6Al–4V. Mater Des [Internet]. 2016 Aug 15 [cited 2018 Mar 1];104:365–375. Available from: https://www.sciencedirect.com/science/article/pii/S0264127516306293 doi: 10.1016/j.matdes.2016.05.027
  • Zhang X, Martina F, Ding J, et al. Fracture toughness and fatigue crack growth rate properties in wire+arc additive manufactured Ti-6Al-4V. Fatigue Fract Eng Mater Struct [Internet]. 2017 May 1 [cited 2018 Mar 1];40(5):790–803. Available from: http://doi.wiley.com/10.1111/ffe.12547.
  • Zhang YM, Chen Y, Li P, et al. Weld deposition-based rapid prototyping: A preliminary study. J Mater Process Technol. 2003;135(2–3 SPEC.):347–357. doi: 10.1016/S0924-0136(02)00867-1
  • Adebayo A, Mehnen J, Tonnellier X. Limiting travel speed in additive layer manufacturing. Trends Weld Res Proc 9th Int Conf. 2013;3:1038–1044.
  • Wei PS. Thermal science of weld bead defects: a review. J Heat Transfer [Internet]. 2011 Mar 1 [cited 2018 Mar 8];133(3):31005, Available from: http://heattransfer.asmedigitalcollection.asme.org/article.aspx?articleid=1450140. doi: 10.1115/1.4002445
  • Wei PS, Yeh JS, Ting CN, et al. The effects of prandtl number on wavy weld boundary. Int J Heat Mass Transf [Internet]. 2009 Jul 1 [cited 2018 Mar 8];52(15–16):3790–3798. Available from: https://www.sciencedirect.com/science/article/pii/S0017931009001343. doi: 10.1016/j.ijheatmasstransfer.2009.02.020
  • Gratzke U, Kapadia PD, Dowden J, et al. Theoretical approach to the humping phenomenon in welding processes. J Phys D Appl Phys [Internet]. 1992 Nov 14 [cited 2018 Mar 8];25(11):1640–1647. Available from: http://stacks.iop.org/0022-3727/25/i=11/a=012?key=crossref.2125e2c4175f7b36bbd5b804fc1e0ef0. doi: 10.1088/0022-3727/25/11/012
  • Nguyen TC, Weckman DC, Johnson DA, et al. The humping phenomenon during high speed gas metal arc welding. Sci Technol Weld Join [Internet]. 2005 Jul 4 [cited 2018 Mar 8];10(4):447–459. doi: 10.1179/174329305X44134
  • Kou S. Metallurgy second edition welding metallurgy [Internet]. Vol. 822, Wiley. 2003. P. 466. Available from: http://books.google.com/books?hl=en&lr=&id=N8gICBzzgRwC&oi=fnd&pg=PR7&dq=WELDING+METALLURGY&ots=KbMCYOBY2l&sig=bUKTMZRhqD6LE6kzQIivLlTfJK4
  • Martina F, Williams S. Wire + arc additive manufacturing vs. traditional machining from solid: a cost comparisonfrom solid: 2015;
  • Gu D. Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms [Internet]. Laser Additive Manufacturing of High-Performance Materials. 2015. 15–71 p. Available from: http://link.springer.com/10.1007/978-3-662-46089-4_2
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater [Internet]. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019
  • Xiong J, Zhang G. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Meas Sci Technol. 2013;24(11):1–7. doi: 10.1088/0957-0233/24/11/115103
  • Geng H, Li J, Xiong J, et al. Optimization of wire feed for GTAW based additive manufacturing. J Mater Process Technol [Internet]. 2017;243:40–47. doi: 10.1016/j.jmatprotec.2016.11.027
  • Withers PJ, Bhadeshia HKDH. Residual stress. part 1 – measurement techniques. Mater Sci Technol [Internet]. 2001 Apr 19 [cited 2018 Mar 8];17(4):355–365. doi: 10.1179/026708301101509980
  • Withers PJ, Bhadeshia HKDH. Residual stress. part 2 – nature and origins. Mater Sci Technol [Internet]. 2001 Apr 19 [cited 2018 Mar 8];17(4):366–375. doi: 10.1179/026708301101510087
  • Moore P, Addison AC, Nowak M. Mechanical performance of wire plus arc additive manufactured steel and stainless steel structures (Paper). The first international congress on welding, additive manufacturing and associated non destructive testing, ICWAM 2017. Metz; 2017. p. 1–9.
  • Fu Y, Zhang H, Wang G, et al. Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel. J Mater Process Technol [Internet]. 2017;250(February):220–227. doi: 10.1016/j.jmatprotec.2017.07.023
  • Kotecki D, Armao F. Stainless steels-welding guide [Internet]. Lincoln Global Inc. Cleveland. 2003. Available from: http://www.lincolnelectric.com/assets/global/Products/Consumable_StainlessNickelandHighAlloy-BlueMax-BlueMaxMIG316LSi/c64000.pdf
  • Ji L, Lu J, Liu C, et al. Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing. In: Wang Y, editor. MATEC Web Conf [Internet]. 2017 Oct 25 [cited 2018 Mar 2];128:3006. Available from: http://www.matec-conferences.org/10.1051/matecconf/201712803006
  • Wang P, Hu S, Shen J, et al. Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol [Internet]. 2017;245:122–133. doi: 10.1016/j.jmatprotec.2017.02.019
  • Wiktorowicz R, Melton G. Shielding gas selection for controlled dip transfer (short arc) welding. TWI Bull.
  • Consonni M. The 2017 edition of BS EN ISO 15614-1: review of the changes and their practical implications. Cambridge; 2018.
  • Melfi T. ASME IX heat input code changes. Westminster (CO): EPRI conference; 2010.
  • Pickin CG, Young K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join [Internet]. 2006;11(5):583–585. doi: 10.1179/174329306X120886
  • Pickin CG, Williams SW, Lunt M. Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J Mater Process Technol [Internet]. 2011;211(3):496–502. doi: 10.1016/j.jmatprotec.2010.11.005
  • Kumar NP, Arungalai Vendan S, Siva Shanmugam N. Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061. J Alloys Compd [Internet]. 2016;658:255–264. doi: 10.1016/j.jallcom.2015.10.166
  • Ola OT, Doern FE. A study of cold metal transfer clads in nickel-base INCONEL 718 superalloy. Mater Des [Internet]. 2014;57:51–59. doi: 10.1016/j.matdes.2013.12.060
  • Elrefaey A. Effectiveness of cold metal transfer process for welding 7075 aluminium alloys. Sci Technol Weld Join [Internet]. 2015;20(4):280–285. doi: 10.1179/1362171815Y.0000000017
  • Gungor B, Kaluc E, Taban E, et al. Mechanical and microstructural properties of robotic cold metal transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des [Internet]. 2014;54:207–211. doi: 10.1016/j.matdes.2013.08.018
  • Wang H, Jiang W, Ouyang J, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. J Mater Process Technol. 2004;148(1):93–102. doi: 10.1016/j.jmatprotec.2004.01.058
  • Gu J, Cong B, Ding J, et al. Wire+Arc additive manufacturing of aluminium. Proceedings of the 25th annual international solid freeform fabrication symposium. Austin (TX); 2014. p. 4–6.
  • ASMHandbookCommitte. Metals Handbook (Vol.2) - Properties and Selection: nonferrous alloys and Special-purpose materials. 10th ed. Materials Park (OH): ASM International; 1990.
  • Fixter J, Gu J, Ding J, et al. Preliminary investigation into the suitability of 2xxx alloys for wire-Arc additive manufacturing. Mater Sci Forum [Internet]. 2016;877:611–616. Available from: http://www.scientific.net/MSF.877.611. doi: 10.4028/www.scientific.net/MSF.877.611
  • Ding Y, Muñiz-Lerma JA, Trask M, et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull. 2016;41(10):745–751. doi: 10.1557/mrs.2016.214
  • Silva CMA, Bragança IMF, Cabrita A, et al. Formability of a wire arc deposited aluminium alloy. J Brazilian Soc Mech Sci Eng. 2017;39(10):4059–4068. doi: 10.1007/s40430-017-0864-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.