1,353
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Microstructure and bonding mechanisms in cold spray coatings

Pages 2057-2077 | Received 12 Jan 2018, Accepted 07 May 2018, Published online: 11 Jun 2018

References

  • Alkhimov A, Papyrin A, Kosarev V, et al. Gas-dynamic spraying method for applying a coating; 1994 [cited 2018 Apr 18]. Available from: http://www.google.com/patents/US5302414
  • Papyrin A, Kosarev V, Klinkov S, et al. Cold spray technology. Oxford: Elsevier; 2006.
  • Champagne VK. The cold spray materials deposition process: fundamentals and applications. Cambridge: Woodhead Publishing Limited; 2007.
  • Villafuerte J. Modern cold spray – materials, process and application. 1st ed. Cham: Springer; 2015.
  • Karthikeyan J. Cold spray technology: international status and USA efforts. Barberton (OH): ASB Industries Inc.; December 2004.
  • Irissou E, Legoux JG, Ryabinin AN, et al. Review on cold spray process and technology: part i–intellectual property. J Therm Spray Technol. 2008;17(4):495–516. doi: 10.1007/s11666-008-9203-3
  • Ghelichi R, Guagliano M. Coating by the cold spray process: a state of the art. Fract Struct Integrity. 2009;8:30–44.
  • Singh H, Sidhu TS, Kalsi SBS. Cold spray technology: future of coating deposition processes. Fract Struct Integrity. 2012;22:69–84.
  • Moridi A, Hassani-Gangaraj SM, Guagliano M, et al. Cold spray coating: review of material systems and future perspectives. Surf Eng. 2014;30(6):369–395. doi: 10.1179/1743294414Y.0000000270
  • Bala N, Singh H, Karthikeyan J, et al. Cold spray coating process for corrosion protection: a review. Surf Eng. 2014;30(6):414–421. doi: 10.1179/1743294413Y.0000000148
  • Assadi H, Kreye H, Gaertner F, et al. Cold spraying – a materials perspective. Acta Mater. 2016;116:382–407. doi: 10.1016/j.actamat.2016.06.034
  • Champagne V, Helfritch D. The unique abilities of cold spray deposition. Int Mater Rev. 2016;61(7):437–455. doi: 10.1080/09506608.2016.1194948
  • Botef I, Villafuerte J. Overview. In: Villafuerte J, editor. Modern cold spray: materials, process, and applications. Cham: Springer International Publishing; 2015. p. 1–29.
  • Richer P, Yandouzi M, Beauvais L, et al. Oxidation behaviour of conicraly bond coats produced by plasma, hvof and cold gas dynamic spraying. Surf Coat Techn. 2010;204(24):3962–3974. doi: 10.1016/j.surfcoat.2010.03.043
  • Wang HT, Li CJ, Yang GJ, et al. Cold spraying of fe/al powder mixture: coating characteristics and influence of heat treatment on the phase structure. Appl Surf Sci. 2008;255(5):2538–2544. doi: 10.1016/j.apsusc.2008.07.127
  • Wang HT, Li CJ, Ji GC, et al. Annealing effect on the intermetallic compound formation of cold sprayed fe/al composite coating. J Therm Spray Technol. 2012;21(3–4):571–577. doi: 10.1007/s11666-011-9722-1
  • Wong W, Irissou E, Ryabinin AN, et al. Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings. J Therm Spray Technol. 2010;20(1–2):213–226. doi: 10.1007/s11666-010-9568-y
  • Lima RS, Karthikeyan J, Kay CM, et al. Microstructural characteristics of cold sprayed nanostructured WC-CO coatings. Thin Solid Films. 2002;416(1–2):129–135. doi: 10.1016/S0040-6090(02)00631-4
  • de Villiers Lovelock HL. Powder/processing/structure relationships in WC-CO thermal spray coatings: a review of the published literature. J Therm Spray Technol. 1998;7:357–373. doi: 10.1361/105996398770350846
  • Kim HJ, Lee CH, Hwang SY. Fabrication of WC-CO coatings by cold spray deposition. Surf Coat Techn. 2005;191(2–3):335–340. doi: 10.1016/j.surfcoat.2004.04.058
  • Ajdelsztajn L, Jodoin B, Kim GE, et al. Cold spray deposition of nanocrystalline aluminium alloys. Metall Mater Trans A. 2005;36:657–666. doi: 10.1007/s11661-005-0182-4
  • Spencer K, Zhang MX. Optimisation of stainless steel cold spray coatings using mixed particle size distributions. Surf Coat Techn. 2011;205(21–22):5135–5140. doi: 10.1016/j.surfcoat.2011.05.020
  • Seo D, Ogawa K, Sakaguchi K, et al. Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes. Surf Coat Techn. 2012;206(8–9):2316–2324. doi: 10.1016/j.surfcoat.2011.10.010
  • Koivuluoto H, Coleman A, Murray K, et al. High pressure cold sprayed (hpcs) and low pressure cold sprayed (lpcs) coatings prepared from ofhc cu feedstock: overview from powder characteristics to coating properties. J Therm Spray Technol. 2012;21(5):1065–1075. doi: 10.1007/s11666-012-9790-x
  • Borchers C, Gaertner F, Stoltenhoff T. Microstructural and macroscopic properties of cold sprayed copper coatings. J Appl Phys. 2003;93(12):10064. doi: 10.1063/1.1573740
  • Stoltenhoff T, Borchers C, Gaertner F, et al. Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings. Surf Coat Techn. 2006;200(16–17):4947–4960. doi: 10.1016/j.surfcoat.2005.05.011
  • Clyne TW, Gill SC. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol. 1996;5:401–418. doi: 10.1007/BF02645271
  • Pathak S, Saha G. Development of sustainable cold spray coatings and 3d additive manufacturing components for repair/manufacturing applications: a critical review. Coatings. 2017;7(8):122. doi: 10.3390/coatings7080122
  • Spencer K, Luzin V, Matthews N, et al. Residual stresses in cold spray al coatings: the effect of alloying and of process parameters. Surf Coat Techn. 2012;206(19–20):4249–4255. doi: 10.1016/j.surfcoat.2012.04.034
  • Ghelichi R, MacDonald D, Bagherifard S, et al. Microstructure and fatigue behavior of cold spray coated al5052. Acta Mater. 2012;60(19):6555–6561. doi: 10.1016/j.actamat.2012.08.020
  • Ogawa K, Ito K, Ichimura K, et al. Characterization of low-pressure cold-sprayed aluminum coatings. J Therm Spray Technol. 2008;17(5–6):728–735. doi: 10.1007/s11666-008-9254-5
  • Schmidt T, Gaertner F, Kreye H. New developments in cold spray based on higher gas and particle temperatures. J Therm Spray Technol. 2006;15(4):488–494. doi: 10.1361/105996306X147144
  • Wong W, Irissou E, Vo P, et al. Cold spray forming of inconel 718. J Therm Spray Technol. 2012;22(2–3):413–421. doi: 10.1007/s11666-012-9827-1
  • Alhulaifi AS, Buck GA, Arbegast WJ. Numerical and experimental investigation of cold spray gas dynamic effects for polymer coating. J Therm Spray Technol. 2012;21(5):852–862. doi: 10.1007/s11666-012-9743-4
  • Tabbara H, Gu S, McCartney DG, et al. Study on process optimization of cold gas spraying. J Therm Spray Technol. 2011;20(3):608–620. doi: 10.1007/s11666-010-9564-2
  • Li CJ, Li WY. Deposition characteristics of titanium coating in cold spraying. Surf Coat Techn. 2003;167(2–3):278–283. doi: 10.1016/S0257-8972(02)00919-2
  • Balani K, Agarwal A, Seal S, et al. Transmission electron microscopy of cold sprayed 1100 aluminum coating. Scr Mater. 2005;53(7):845–850. doi: 10.1016/j.scriptamat.2005.06.008
  • Lima RS, Kucuk A, Berndt CC, et al. Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. J Mater Sci Lett. 2002;21(21):1687–1689. doi: 10.1023/A:1020833011448
  • Assadi H, Schmidt T, Richter H, et al. On parameter selection in cold spraying. J Therm Spray Technol. 2011;20(6):1161–1176. doi: 10.1007/s11666-011-9662-9
  • Assadi H, Gaertner F, Stoltenhoff T, et al. Bonding mechanism in cold gas spraying. Acta Mater. 2003;51(15):4379–4394. doi: 10.1016/S1359-6454(03)00274-X
  • Schmidt T, Gaertner F, Assadi H, et al. Development of a generalized parameter window for cold spray deposition. Acta Mater. 2006;54(3):729–742. doi: 10.1016/j.actamat.2005.10.005
  • Sakaki K. The influence of nozzle design in the cold spray process. In: Champagne VK, editor. The cold spray material deposition process: fundamentals and applications. Book section 7. Cambridge: Woodhead Publishing Limited; 2007. p. 117–145
  • Li CJ, Li WY, Liao H. Examination of the critical velocity for deposition of particles in cold spraying. J Therm Spray Technol. 2006;15(2):212–222. doi: 10.1361/105996306X108093
  • Pattison J, Celotto S, Khan A, et al. Standoff distance and bow shock phenomena in the cold spray process. Surf Coat Techn. 2008;202(8):1443–1454. doi: 10.1016/j.surfcoat.2007.06.065
  • King P, Yandouzi M, Jodoin B. The physics of cold spray. In: Villafuerte J, editor. Modern cold spray: materials, process, and applications. Book section 2. Cham: Springer International Publishing; 2015. p. 31–72.
  • Wong W, Vo P, Irissou E, et al. Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings. J Therm Spray Technol. 2013;22(7):1140–1153. doi: 10.1007/s11666-013-9951-6
  • Lee J, Shin S, Kim H, et al. Effect of gas temperature on critical velocity and deposition characteristics in kinetic spraying. Appl Surf Sci. 2007;253(7):3512–3520. doi: 10.1016/j.apsusc.2006.07.061
  • Li CJ, Wang HT, Zhang Q, et al. Influence of spray materials and their surface oxidation on the critical velocity in cold spraying. J Therm Spray Technol. 2010;19(1):95–101. doi: 10.1007/s11666-009-9427-x
  • Kang K, Yoon S, Ji Y, et al. Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process. Mater Sci Eng A. 2008;486(1–2):300–307. doi: 10.1016/j.msea.2007.09.010
  • Alkhimov AP, Kosarev VF, Papyrin AN. Gas-gynamic spraying. An experimental study of the spraying process. J Appl Mech Tech Phys. 1998;39:318–323. doi: 10.1007/BF02468100
  • Schmidt T, Assadi H, Gaertner F, et al. From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol. 2009;18(5–6):794–808. doi: 10.1007/s11666-009-9357-7
  • King PC, Zahiri SH, Jahedi M. Focused ion beam micro-dissection of cold-sprayed particles. Acta Mater. 2008;56(19):5617–5626. doi: 10.1016/j.actamat.2008.07.034
  • Gaertner F, Stoltenhoff T, Schmidt T, et al. The cold spray process and its potential for industrial applications. J Therm Spray Technol. 2006;15(2):223–232. doi: 10.1361/105996306X108110
  • Klinkov SV, Kosarev VF, Rein M. Cold spray deposition: significance of particle impact phenomena. Aerosp Sci Technol. 2005;9(7):582–591. doi: 10.1016/j.ast.2005.03.005
  • Papyrin A, Kosarev V, Klinkov S, et al. High-velocity interaction of particles with the substrate. experiement and modeling. In: Papyrin A, editor. Cold spray technology. Book section 2. Oxford: Elsevier; 2006. p. 33–115.
  • Klinkov SV, Kosarev VF. Measurements of cold spray deposition efficiency. J Therm Spray Technol. 2006;15(3):364–371. doi: 10.1361/105996306X124365
  • Hussain T, Yue S, Li CJ. Characteristics of feedstock materials. In: Villafuerte J, editor. Modern cold spray: materials, process, and applications. Book section 3. Cham: Springer International Publishing; 2015. p. 73–105.
  • Rokni MR, Widener CA, Crawford GA. Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surf Coat Techn. 2014;251:254–263. doi: 10.1016/j.surfcoat.2014.04.035
  • Ajdelsztajn L, Lavernia EJ, Jodoin B, et al. Cold gas dynamic spraying of iron-base amorphous alloy. J Therm Spray Technol. 2006;15(4):495–500. doi: 10.1361/105996306X146857
  • Chaudhuri A, Raghupathy Y, Srinivasan D, et al. Microstructural evolution of cold-sprayed inconel 625 superalloy coatings on low alloy steel substrate. Acta Mater. 2017;129:11–25. doi: 10.1016/j.actamat.2017.02.070
  • Champagne VK, Helfritch D, Leyman P, et al. Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. J Therm Spray Technol. 2005;14(3):330–334. doi: 10.1361/105996305X59332
  • Grujicic M, Saylor JR, Beasley DE, et al. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci. 2003;219(3–4):211–227. doi: 10.1016/S0169-4332(03)00643-3
  • Findik F. Recent developments in explosive welding. Mater Des. 2011;32(3):1081–1093. doi: 10.1016/j.matdes.2010.10.017
  • Chen C, Xie Y, Yin S, et al. Evaluation of the interfacial bonding between particles and substrate in angular cold spray. Mater Lett. 2016;173:76–79. doi: 10.1016/j.matlet.2016.03.036
  • King PC, Bae G, Zahiri SH, et al. An experimental and finite element study of cold spray copper impact onto two aluminum substrates. J Therm Spray Technol. 2009;19(3):620–634. doi: 10.1007/s11666-009-9454-7
  • Profizi P, Combescure A, Ogawa K. Numerical analysis of single particle impact in the context of cold spray: a new adhesion model. IOP Conf Ser: Earth Environ Sci. 2016;32:012062.
  • Wu J, Fang H, Kim H, et al. High speed impact behaviors of al alloy particle onto mild steel substrate during kinetic deposition. Mater Sci Eng A. 2006;417(1–2):114–119. doi: 10.1016/j.msea.2005.11.011
  • Yin S, Wang X, Li W, et al. Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Appl Surf Sci. 2012;259:294–300. doi: 10.1016/j.apsusc.2012.07.036
  • Guetta S, Berger MH, Borit F, et al. Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol. 2009;18(3):331–342. doi: 10.1007/s11666-009-9327-0
  • Vidaller MV, List A, Gaertner F, et al. Single impact bonding of cold sprayed Ti-6Al-4V powders on different substrates. J Therm Spray Technol. 2015;24(4):644–658. doi: 10.1007/s11666-014-0200-4
  • Xie Y, Yin S, Chen C, et al. New insights into the coating/substrate interfacial bonding mechanism in cold spray. Scr Mater. 2016;125:1–4. doi: 10.1016/j.scriptamat.2016.07.024
  • Bae G, Xiong Y, Kumar S, et al. General aspects of interface bonding in kinetic sprayed coatings. Acta Mater. 2008;56(17):4858–4868. doi: 10.1016/j.actamat.2008.06.003
  • Zhang D, Shipway PH, McCartney DG. Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation. J Therm Spray Technol. 2005;14(1):109–116. doi: 10.1361/10599630522666
  • Ajdelsztajn L, Jodoin B, Schoenung JM. Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Techn. 2006;201(3–4):1166–1172. doi: 10.1016/j.surfcoat.2006.01.037
  • Van Steenkiste TH, Smith JR, Teets RE. Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coat Techn. 2002;154(2–3):237–252. doi: 10.1016/S0257-8972(02)00018-X
  • Ning XJ, Jang JH, Kim HJ, et al. Cold spraying of Al-Sn binary alloy: coating characteristics and particle bonding features. Surf Coat Techn. 2008;202(9):1681–1687. doi: 10.1016/j.surfcoat.2007.07.026
  • Li CJ, Li WY, Wang YY. Formation of metastable phases in cold-sprayed soft metallic deposit. Surf Coat Techn. 2005;198(1–3):469–473. doi: 10.1016/j.surfcoat.2004.10.063
  • Barradas S, Guipont V, Molins R, et al. Laser shock flier impact simulation of particle-substrate interactions in cold spray. J Therm Spray Technol. 2007;16(4):548–556. doi: 10.1007/s11666-007-9069-9
  • Bolesta AV, Fomin VM, Sharafutdinov MR, et al. Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles. Nuc Instr Meth Phys Res A. 2001;470(1–2):249–252. doi: 10.1016/S0168-9002(01)01067-1
  • Drehmann R, Grund T, Lampke T, et al. Splat formation and adhesion mechanisms of cold gas-sprayed Al coatings on Al2O3 substrates. J Therm Spray Technol. 2013;23(1–2):68–75. doi: 10.1007/s11666-013-9966-z
  • Humphreys F, Hatherly M. The deformed state. In: Recrystallization and related annealing phenomena. 2nd ed.; Chapter 2. Oxford: Elsevier Science and Technology; 2004.
  • Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574. doi: 10.1016/j.matdes.2016.09.012
  • Doherty R, Hughes D, Humphreys F, et al. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238:219–274. doi: 10.1016/S0921-5093(97)00424-3
  • Jia N, Roters F, Eisenlohr P, et al. Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu-Ag and Cu-Nb metal matrix composites. Acta Mater. 2013;61(12):4591–4606. doi: 10.1016/j.actamat.2013.04.029
  • Jia N, Eisenlohr P, Roters F, et al. Orientation dependence of shear banding in face-centered-cubic single crystals. Acta Mater. 2012;60(8):3415–3434. doi: 10.1016/j.actamat.2012.03.005
  • Paul H, Driver JH, Maurice C, et al. Shear band microtexture formation in twinned face centred cubic single crystals. Mater Sci Eng A. 2003;359(1–2):178–191. doi: 10.1016/S0921-5093(03)00335-6
  • Paul H, Morawiec A, Driver JH, et al. On twinning and shear banding in a Cu-8at.% Al alloy plane strain compressed at 77K. Int J Plast. 2009;25(8):1588–1608. doi: 10.1016/j.ijplas.2008.10.003
  • Srinivasan D, Chandrasekhar V, Amuthan R, et al. Characterization of cold-sprayed IN625 and NiCr coatings. J Therm Spray Technol. 2016;25(4):725–744. doi: 10.1007/s11666-016-0382-z
  • Rokni MR, Nutt SR, Widener CA, et al. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J Therm Spray Technol. 2017;26(6):1308–1355. doi: 10.1007/s11666-017-0575-0
  • Humphreys F, Hatherly M. Continuous recrystallization during and after large strain deformation. In: Recrystallization and related annealing phenomena. 2nd ed.; Chapter 14. Oxford: Elsevier Science and Technology; 2004.
  • Zhang Y, Brodusch N, Descartes S, et al. The effect of submicron second-phase particles on the rate of grain refinement in a copper-oxygen alloy during cold spray. J Therm Spray Technol. 2017;26(7):1509–1516. doi: 10.1007/s11666-017-0603-0
  • Robson JD, Henry DT, Davis B. Particle effects on recrystallization in magnesiummanganese alloys: particle-stimulated nucleation. Acta Mater. 2009;57(9):2739–2747. doi: 10.1016/j.actamat.2009.02.032
  • Kim K, Watanabe M, Kawakita J, et al. Grain refinement in a single titanium powder particle impacted at high velocity. Scr Mater. 2008;59(7):768–771. doi: 10.1016/j.scriptamat.2008.06.020
  • Borchers C, Gaertner F, Stoltenhoff T, et al. Formation of persistent dislocation loops by ultra-high strain-rate deformation during cold spraying. Acta Mater. 2005;53(10):2991–3000. doi: 10.1016/j.actamat.2005.02.048
  • Zou Y, Qin W, Irissou E, et al. Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: electron backscatter diffraction characterization. Scr Mater. 2009;61(9):899–902. doi: 10.1016/j.scriptamat.2009.07.020
  • Xiong Y, Xiong X, Yoon S, et al. Dependence of bonding mechanisms of cold sprayed coatings on strain-rate-induced non-equilibrium phase transformation. J Therm Spray Technol. 2011;20(4):860–865. doi: 10.1007/s11666-011-9634-0
  • Suhonen T, Varis T, Dosta S, et al. Residual stress development in cold sprayed Al, Cu and Ti coatings. Acta Mater. 2013;61(17):6329–6337. doi: 10.1016/j.actamat.2013.06.033
  • Luzin V, Spencer K, Zhang MX. Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Mater. 2011;59(3):1259–1270. doi: 10.1016/j.actamat.2010.10.058
  • Champagne VK, Koh P, Eden TJ, et al. Applications. In: Villafuerte J, editor. Modern cold spray: materials, process, and applications. Book section 10. Cham: Springer International Publishing; 2015. p. 341–376.
  • Champagne VK. The repair of magnesium rotorcraft components by cold spray. J Fail Anal Prev. 2008;8(2):164–175. doi: 10.1007/s11668-008-9116-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.