619
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Strategies to synthesise copper oxide nanoparticles and their bio applications – a review

, &
Pages 2214-2222 | Received 01 Apr 2018, Accepted 26 May 2018, Published online: 12 Jun 2018

References

  • Li B, Zhou Y, Wu W, et al. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly (nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron. 2015;67:121–128. doi: 10.1016/j.bios.2014.07.053
  • Rudramurthy GR, Swamy MK, Sinniah UR, et al. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7):836–866. doi: 10.3390/molecules21070836
  • Ahamed M, AlSalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848. doi: 10.1016/j.cca.2010.08.016
  • Kahru A, Dubourguier HC. From ecotoxicology to nanoecotoxicology. Toxicology. 2010;269(2–3):105–119. doi: 10.1016/j.tox.2009.08.016
  • Cembrero-Coca P, Cembrero J, Busquets-Mataix D, et al. Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O. Mater Sci Technol. 2017;33(17):2102–2109. doi: 10.1080/02670836.2017.1349595
  • Alaraby M, Annangi B, Marcos R, et al. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: a review. J Toxicol Env Heal B. 2016;19(2):65–104. doi: 10.1080/10937404.2016.1166466
  • Siddiqui MA, Alhadlaq HA, Ahmad J, et al. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One. 2013;8(8):69534–69543. doi: 10.1371/journal.pone.0069534
  • Zhang Q, Zhang K, Xu D, et al. Cuo nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci. 2014;60:208–337. doi: 10.1016/j.pmatsci.2013.09.003
  • Chand P, Gaur A, Kumar A, et al. Effect of NaOH molar concentration on morphology, optical and ferroelectric properties of hydrothermally grown CuO nanoplates. Mater Sci Semicond Process. 2015;38:72–80. doi: 10.1016/j.mssp.2015.04.006
  • Dagher S, Haik Y, Ayesh AI, et al. Synthesis and optical properties of colloidal CuO nanoparticles. J. Lumin. 2014;151:362–370. doi: 10.1016/j.jlumin.2014.02.015
  • Wahab R, Khan F, Kaushik NK, et al. Photocatalytic TMO-NMs adsorbent: temperature-time dependent safranine degradation, sorption study validated under optimized effective equilibrium models parameter with standardized statistical analysis. Sci Rep. 2017;7:42509–42524. doi: 10.1038/srep42509
  • Gawande MB, Goswami A, Felpin FX, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116(6):3722–3811. doi: 10.1021/acs.chemrev.5b00482
  • Mirzaei A, Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuators B. 2016;237:749–775. doi: 10.1016/j.snb.2016.06.114
  • Hajipour MJ, Fromm KM, Ashkarran AA, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499–511. doi: 10.1016/j.tibtech.2012.06.004
  • Isani G, Falcioni ML, Barucca G, et al. Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicol Environ Saf. 2013;97:40–46. doi: 10.1016/j.ecoenv.2013.07.001
  • Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res. 2017;25(11):1–9.
  • Rocha TL, Sabóia-Morais SM, Bebianno MJ. Histopathological assessment and inflammatory response in the digestive gland of marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots. Aquat Toxicol. 2016;177:306–315. doi: 10.1016/j.aquatox.2016.06.003
  • Sharma H, Mishra PK, Talegaonkar S, et al. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015;20(9):1143–1151. doi: 10.1016/j.drudis.2015.05.009
  • Aderibigbe BA. Metal-based nanoparticles for the treatment of infectious diseases. Molecules. 2017;22(8):1370–1407. doi: 10.3390/molecules22081370
  • Teng F, Yao W, Zheng Y, et al. Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis. Sens Actuators B. 2008;134(2):761–768. doi: 10.1016/j.snb.2008.06.023
  • Keller AA, Adeleye AS, Conway JR, et al. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28–40. doi: 10.1016/j.impact.2017.05.003
  • Jadhav S, Gaikwad S, Nimse M, et al. Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J Cluster Sci. 2011;22(2):121–129. doi: 10.1007/s10876-011-0349-7
  • Katwal R, Kaur H, Sharma G, et al. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173–184. doi: 10.1016/j.jiec.2015.06.021
  • Moritz M, Geszke-Moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J. 2013;228:596–613. doi: 10.1016/j.cej.2013.05.046
  • Ranjbar-Karimi R, Bazmandegan Shamili A, Aslani A, et al. Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Phys B Condens Matter. 2010;405:3096–3100. doi: 10.1016/j.physb.2010.04.021
  • Mageshwari K, Sathyamoorthy R. Flower-shaped CuO nanostructures: synthesis, characterization and antimicrobial activity. J Mater Sci Technol. 2013;29(10):909–914. doi: 10.1016/j.jmst.2013.04.020
  • Vidyasagar C, Naik YA, Venkatesha T, et al. Solid-state synthesis and effect of temperature on optical properties of CuO nanoparticles. Nano-Micro Lett. 2012;4:73–77. doi: 10.1007/BF03353695
  • Lashanizadegan M, Mousavi F. Synthesis, characterization, optical properties and catalytic activity of CuO/Al2O3 nanoparticles for the green epoxidation of olefins. React Kinet Mech Cat. 2015;116(2):421–431. doi: 10.1007/s11144-015-0895-3
  • Maeda T, Matsubara N, Kobayashi Y, et al. Synthesis of nanoparticles composed of silver and copper for metal–metal bonding. Mater Sci Technol. 2017;33(14):1618–1625. doi: 10.1080/02670836.2017.1303123
  • Raliya R, Tarafdar JC. Zno nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2013;2(1):48–57. doi: 10.1007/s40003-012-0049-z
  • Suleiman M, Mousa M, Hussein A, et al. Copper (II)-oxide nanostructures: synthesis, characterizations and their applications – review. J Mater Environ Sci. 2013;4(5):792–797.
  • Karunakaran C, Manikandan G, Gomathisankar P. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties. J Alloys Compd. 2013;580:570–577. doi: 10.1016/j.jallcom.2013.07.150
  • Wongpisutpaisan N, Charoonsuk P, Vittayakorn N, et al. Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Proc. 2011;9:404–409. doi: 10.1016/j.egypro.2011.09.044
  • Abramov OV, Gedanken A, Koltypin Y, et al. Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surf Coat Tech. 2009;204(5):718–722. doi: 10.1016/j.surfcoat.2009.09.030
  • Perelshtein I, Lipovsky A, Perkas N, et al. The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Res. 2015;8(2):695–707. doi: 10.1007/s12274-014-0553-5
  • Jayaprakash J, Srinivasan N, Chandrasekaran P, et al. Synthesis and characterization of cluster of grapes like pure and zinc-doped CuO nanoparticles by sol–gel method. Spectrochim Acta A. 2015;136:1803–1806. doi: 10.1016/j.saa.2014.10.087
  • Karthik K, Jaya NV, Kanagaraj M, et al. Temperature-dependent magnetic anomalies of CuO nanoparticles. Solid State Commun. 2011;151:564–568. doi: 10.1016/j.ssc.2011.01.008
  • Padil VV, Černík M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed. 2013;8:889–898.
  • Deol H, Pramanik S, Kumar M, et al. Supramolecular ensemble of a TICT-AIEE active pyrazine derivative and CuO NPs: A potential photocatalytic system for sonogashira couplings. ACS Catal. 2016;6(6):3771–3783. doi: 10.1021/acscatal.6b00393
  • Fernandes DM, Silva R, Hechenleitner AW, et al. Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater Chem Phys. 2009;115(1):110–115. doi: 10.1016/j.matchemphys.2008.11.038
  • Nune SK, Chanda N, Shukla R, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J Mater Chem. 2009;19(19):2912–2920. doi: 10.1039/b822015h
  • Kumar G, Mittal S, Sak K, et al. Molecular mechanisms underlying chemopreventive potential of curcumin: current challenges and future perspectives. Life Sci. 2016;148:313–328. doi: 10.1016/j.lfs.2016.02.022
  • Manivasagan P, Bharathiraja S, Bui NQ, et al. Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int J Pharm. 2016;511(1):367–379. doi: 10.1016/j.ijpharm.2016.07.025
  • Shankar S, Teng X, Rhim JW. Properties and characterization of agar/CuNP bionanocomposite films prepared with different copper salts and reducing agents. Carbohydr Polym. 2014;114:484–492. doi: 10.1016/j.carbpol.2014.08.036
  • Li X, Lu D, Sheng Z, et al. A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip. Talanta. 2012;100:1–6. doi: 10.1016/j.talanta.2012.08.041
  • Wang Z, Xu M, Shao L, et al. Palladium immobilized on chitosan nanofibers cross-linked by glutaraldehyde as an efficient catalyst for the Mizoroki–Heck reaction. Kinet Catal. 2016;57(3):354–359. doi: 10.1134/S0023158416030149
  • Sivaraj R, Rahman PK, Rajiv P, et al. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A. 2014;129:255–258. doi: 10.1016/j.saa.2014.03.027
  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92. doi: 10.1016/j.jconrel.2015.10.049
  • El-Nahhal IM, Zourab SM, Kodeh FS, et al. Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Int Nano Lett. 2012;2(1):14–18. doi: 10.1186/2228-5326-2-14
  • Devi AB, Moirangthem DS, Talukdar NC, et al. Novel synthesis and characterization of CuO nanomaterials: biological applications. Chin Chem Lett. 2014;25:1615–1619. doi: 10.1016/j.cclet.2014.07.014
  • Suresh D, Nethravathi PC, Rajanaika H, et al. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process. 2015;31:446–454. doi: 10.1016/j.mssp.2014.12.023
  • De Loid G, Cohen JM, Darrah T, et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 2014;5:3514. doi: 10.1038/ncomms4514
  • Nemmar A, Holme JA, Rosas I, et al. Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Bio Med Res Int. 2013;2013:1–22. doi: 10.1155/2013/279371
  • Kasemets K, Ivask A, Dubourguier HC, et al. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro. 2009;23(6):1116–1122. doi: 10.1016/j.tiv.2009.05.015
  • Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol. 2014;98(3):1001–1009. doi: 10.1007/s00253-013-5422-8
  • Franklin NM, Stauber JL, Lim RP. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem. 2002;21(11):2412–2422. doi: 10.1002/etc.5620211121
  • Sajid M, Ilyas M, Basheer C, et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res. 2015;22(6):4122–4143. doi: 10.1007/s11356-014-3994-1
  • Saison C, Perreault F, Daigle JC, et al. Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol. 2010;96(2):109–114. doi: 10.1016/j.aquatox.2009.10.002
  • Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ Pollut. 2013;172:76–85. doi: 10.1016/j.envpol.2012.08.011
  • Thit A, Selck H, Bjerregaard HF. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells. Toxicol In Vitro. 2015;29(5):1053–1059. doi: 10.1016/j.tiv.2015.03.020
  • Wang Z, Xie X, Zhao J, et al. Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L. Environ Sci Technol. 2012;46(8):4434–4441. doi: 10.1021/es204212z
  • Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci. 2016;17(6):929. doi: 10.3390/ijms17060929
  • Karlsson HL, Cronholm P, Hedberg Y, et al. Cell membrane damage and protein interaction induced by copper containing nanoparticles—importance of the metal release process. Toxicology. 2013;313(1):59–69. doi: 10.1016/j.tox.2013.07.012
  • Zhang X, Li W, Yang Z. Toxicology of nanosized titanium dioxide: an update. Arch Toxicol. 2015;89(12):2207–2217. doi: 10.1007/s00204-015-1594-6
  • Rafiei S, Riazi GH, Afrasiabi A, et al. Zinc and copper oxide nanoparticles decrease synaptosomal glutamate uptake: an in vitro study. J Iran Chem Soc 2015;12:87–94. doi: 10.1007/s13738-014-0458-y
  • Karlsson HL, Gliga AR, Calléja FM, et al. Mechanism-based genotoxicity screening of metal oxide nanoparticles using the ToxTracker panel of reporter cell lines. Part Fibre Toxicol. 2014;11(1):41–55. doi: 10.1186/s12989-014-0041-9
  • Sun J, Wang S, Zhao D, et al. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol. 2011;27(5):333–342. doi: 10.1007/s10565-011-9191-9
  • Dai L, Banta GT, Selck H, et al. Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in the deposit feeder, Capitella teleta. Mar Environ Res. 2015;111:99–106. doi: 10.1016/j.marenvres.2015.06.010
  • Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–1371. doi: 10.1016/j.tiv.2009.08.005
  • Gupta Tapan. Introduction Copper interconnect technology. New York: Springer; 2009. p. 1–65.
  • Ahir M, Bhattacharya S, Karmakar S, et al. Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials. 2016;76:115–132. doi: 10.1016/j.biomaterials.2015.10.044
  • Chibber S, Ansari SA, Satar R. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J Nanopart Res. 2013;15(4):1492. doi: 10.1007/s11051-013-1492-x
  • Sarkar A, Ghosh S, Chowdhury S, et al. Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. BBA Gen Subjects. 2016;1860(10):2065–2075. doi: 10.1016/j.bbagen.2016.07.001
  • Grigore ME, Biscu ER, Holban AM, et al. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016;9(4):75–89. doi: 10.3390/ph9040075
  • Hedberg J, Karlsson HL, Hedberg Y, et al. The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids Surf B. 2016;141:291–300. doi: 10.1016/j.colsurfb.2016.01.052
  • Beer C, Foldbjerg R, Hayashi Y, et al. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett. 2012;208(3):286–292. doi: 10.1016/j.toxlet.2011.11.002
  • Borkow G, del Carmen Elías A. Facial skin lifting and brightening following sleep on copper oxide containing pillowcases. Cosmetics. 2016;3(3):24. doi: 10.3390/cosmetics3030024
  • Borkow G, Gabbay J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr Chem Biol. 2009;3(3):272–278.
  • Rajan ST, Karthika M, Balaji U, et al. Functional finishing of medical fabrics using CeO2/allicin nanocomposite for wound dressings. J Alloys Compd. 2017;695:747–752. doi: 10.1016/j.jallcom.2016.06.241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.