228
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing the mechanical properties of low-carbon steel by a graded dislocation microstructure

, , , , &
Pages 1854-1860 | Received 30 Mar 2018, Accepted 18 Jun 2018, Published online: 11 Jul 2018

References

  • Lu K. The future of metals. Science. 2010;328:319–320. doi: 10.1126/science.1185866
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • Li X, Lou L, Song W, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater. 2017;29:1606430. doi: 10.1002/adma.201606430
  • Li X, Lou L, Song W, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products. Nano Lett. 2017;17:2985–2993. doi: 10.1021/acs.nanolett.7b00264
  • Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater. 2004;3:511–516. doi: 10.1038/nmat1180
  • Huang G, Li X, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density. Small. 2018.
  • Hollomon JH. Tensile deformation. AIME Trans. 1945;12:1–22.
  • Yamanaka K, Mori M, Kurosu S, et al. Ultrafine grain refinement of biomedical Co-29Cr-6Mo alloy during conventional hot-compression deformation. Metall Mater Trans A. 2009;40:1980–1994. doi: 10.1007/s11661-009-9879-0
  • Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Mater. 1999;47:579–583. doi: 10.1016/S1359-6454(98)00365-6
  • Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scr Mater. 2002;47:69–76. doi: 10.1016/S1359-6462(02)00088-X
  • Jain M, Christman T. Processing of submicron grain 304 stainless steel. J Mater Res. 1996;11:2677–2680. doi: 10.1557/JMR.1996.0336
  • Shi Y, Li M, Guo D, et al. Tailoring grain size distribution for optimizing strength and ductility of multi-modal Zr. Mater Lett. 2013;108:228–230. doi: 10.1016/j.matlet.2013.07.001
  • Segal VM. Severe plastic deformation: simple shear versus pure shear. Mater Sci Eng A. 2002;338:331–344. doi: 10.1016/S0921-5093(02)00066-7
  • Valiev RZ, Langdon TG. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • Zhang X, Godfrey A, Huang X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 2011;59:3422–3430. doi: 10.1016/j.actamat.2011.02.017
  • Valiev RZ, Alexandrov IV, Zhu YT, et al. Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res. 2002;17:5–8. doi: 10.1557/JMR.2002.0002
  • Wu X, Yang M, Yuan F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc Natl Acad Sci. 2015;112:14501–14505. doi: 10.1073/pnas.1517193112
  • Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011;331:1587–1590. doi: 10.1126/science.1200177
  • Yang X, Ma X, Moering J, et al. Influence of gradient structure volume fraction on the mechanical properties of pure copper. Mater Sci Eng A. 2015;645:280–285. doi: 10.1016/j.msea.2015.08.037
  • Wu XL, Yang MX, Yuan FP, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 2016;112:337–346. doi: 10.1016/j.actamat.2016.04.045
  • Wei Y, Li Y, Zhu L, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5.
  • Guo N, Song B, Guo C, et al. Improving tensile and compressive properties of magnesium alloy rods via a simple pre-torsion deformation. Mater Des. 2015;83:270–275. doi: 10.1016/j.matdes.2015.06.071
  • Guo N, Luan B, Liu Q. Influence of pre-torsion deformation on microstructures and properties of cold drawing pearlitic steel wires. Mater Des. 2013;50:285–292. doi: 10.1016/j.matdes.2013.02.047
  • Wang YM, Ma E, Chen MW. Enhanced tensile ductility and toughness in nanostructured Cu. Appl Phys Lett. 2002;80:2395–2397. doi: 10.1063/1.1465528
  • Song B, Guo N, Xin R, et al. Strengthening and toughening of extruded magnesium alloy rods by combining pre-torsion deformation with subsequent annealing. Mater Sci Eng A. 2016;650:300–304. doi: 10.1016/j.msea.2015.10.069
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–822. doi: 10.1038/nmat3115
  • Launey ME, Ritchie RO. On the fracture toughness of advanced materials. Adv Mater. 2009;21:2103–2110. doi: 10.1002/adma.200803322
  • Gensamer M, Pearsall EB, Pellini WS, et al. The tensile properties of pearlite, bainite and spheroidite. Trans Am Soc Met. 1942;30:983–1020.
  • Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B. 1951;64:747–753. doi: 10.1088/0370-1301/64/9/303
  • Petch NJ. The cleavage strengh of polycrystals. J Iron Steel Inst. 1953;174:25–28.
  • Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 2001;49:1199–1207. doi: 10.1016/S1359-6454(01)00020-9
  • Valiev RZ, Estrin Y, Horita Z, et al. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33–39. doi: 10.1007/s11837-006-0213-7
  • Wu XL, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure. Mater Res Lett. 2014;2:185–191. doi: 10.1080/21663831.2014.935821
  • Moering J, Ma X, Malkin J, et al. Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scr Mater. 2016;122:106–109. doi: 10.1016/j.scriptamat.2016.05.006
  • Zeng Z, Li X, Xu D, et al. Gradient plasticity in gradient nano-grained metals. Extreme Mech Lett. 2016;8:213–219. doi: 10.1016/j.eml.2015.12.005
  • Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345:1455–1456. doi: 10.1126/science.1255940
  • Wu XL, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci. 2014;111:7197–7201. doi: 10.1073/pnas.1324069111
  • Li J, Weng GJ, Chen S, et al. On strain hardening mechanism in gradient nanostructures. Int J Plast. 2017;88:89–107. doi: 10.1016/j.ijplas.2016.10.003
  • Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure. Mater Res Lett. 2016;4:145–151. doi: 10.1080/21663831.2016.1153004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.