413
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural engineering and strength-impact toughness prediction in ultra-low carbon bainitic steel

ORCID Icon, &
Pages 1910-1918 | Received 16 Apr 2018, Accepted 29 Jun 2018, Published online: 14 Jul 2018

References

  • Garcia CI, Lis AK, Deardo AJ., et al. Ultra-low carbon bainitic steel plate steels: processing, microstructure and properties. Iron Steelmaker. 1991;18:97–106.
  • Yang JR, Huang CY, Wang SC. The development of ultra-low-carbon bainitic steels. Mater Des. 1992;13:335–338. doi: 10.1016/0261-3069(92)90003-Z
  • Wang SC, Yang JR. Effects of chemical composition, rolling and cooling conditions on the amount of martensite/austenite (M/A) constituent formation in low carbon bainitic steels. Mater Sci Eng A. 1992;154:43–49. doi: 10.1016/0921-5093(92)90361-4
  • Wang SC, Kao PW. The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels. J Mater Sci. 1993;28:5169–5175. doi: 10.1007/BF00570058
  • Lis AK, Lis J, Jeziorski L. Advanced ultra-low carbon bainitic steels with high toughness. J Mater Process Technol. 1997;64:255–266. doi: 10.1016/S0924-0136(96)02575-7
  • Wei ZL, Zuo LF, Ma B, et al. Effect of heat treatment on microstructure and mechanical properties of 800 MPa grade ultra low carbon bainite steel. Adv Mater Res. 2011;415–417:943–946.
  • Jones BL, Johnson DL. Proceedings of an International Conference in Steels for Line Pipe Pipeline Fittings. London: The Metals Society; 1981:14.
  • Bannister AC, Trail SJ. The significance of the yield stress/tensile stress ratio to structural integrity. British Steel Plc., August, 1996.
  • Kim YM, Kim SK, Lim YJ, et al. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ Int. 2002;42:1571–1577. doi: 10.2355/isijinternational.42.1571
  • Tang Z, Stumpf W. The effect of microstructure and processing variables on the yield to ultimate tensile strength ratio in a Nb-Ti and a Nb-Ti-Mo line pipe steel. Mater Sci Eng A. 2008;490:391–402. doi: 10.1016/j.msea.2008.01.060
  • Guo A, Misra RDK, Xu J, et al. Ultrahigh strength and low yield ratio of niobium-microalloyed 900 MPa pipeline steel with nano/ultrafine bainitic lath. Mater Sci Eng A. 2010;527:3886–3892. doi: 10.1016/j.msea.2010.02.067
  • Wang X, Zhao H, Shang C, et al. The microstructure and properties of high performance steels with low yield-to-tensile ratio. J Alloys Compd. 2013;577:S678–S683. doi: 10.1016/j.jallcom.2012.05.129
  • Fan L, Zhou D, Wang T, et al. Tensile properties of an acicular ferrite and martensite/austenite constituent steel with varying cooling rates. Mater Sci Eng A. 2014;590:224–231. doi: 10.1016/j.msea.2013.10.037
  • Kim YM, Lee H, Kim NJ. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A. 2008;478:361–370. doi: 10.1016/j.msea.2007.06.035
  • Asahi H. Effects of Mo addition and austenitizing temperature on hardenability of low alloy B-added steels. ISIJ Int. 2002;42:1150–1155. doi: 10.2355/isijinternational.42.1150
  • Hara T, Asahi H, Uemori R, et al. Role of combined addition of niobium and boron and of molybdenum and boron on hardnenability in Low carbon steels. ISIJ Int. 2004;44:1431–1440. doi: 10.2355/isijinternational.44.1431
  • Zhu K, Oberbillig C, Musik C, et al. Effect of B and B + Nb on the bainitic transformation in low carbon steels. Mater Sci Eng A. 2011;528:4222–4231. doi: 10.1016/j.msea.2011.02.022
  • Sung HK, Shin SY, Hwang B, et al. Effects of B and Cu addition and cooling rate on microstructure and mechanical properties in low-carbon, high-strength bainitic steels. Metall Mater Trans A Phys Metall Mater Sci. 2012;43:3703–3714. doi: 10.1007/s11661-012-1183-8
  • Tamehiro H, Murata M, Habu R, et al. Effect of combined addition of niobium and boron on thermomechanically processed steel. Tetsu-to-Hagane. 1986;72:458–465. doi: 10.2355/tetsutohagane1955.72.3_458
  • Lee CS, Choo WY. Effects of austenite conditioning and hardenability on mechanical properties of B-containing high strength steels. ISIJ Int. 2000;40:S189–S193. doi: 10.2355/isijinternational.40.Suppl_S189
  • Ghali SN, El-Faramawy HS, Eissa MM. Influence of boron additions on mechanical properties of carbon steel. J. Miner. Mater. Charact. Eng. 2012;11:995–999. http://www.scirp.org/journal/jmmce
  • Li YJ, Ponge D, Choi P, et al. Segregation of boron at prior austenite grain boundaries in a quenched martensitic steel studied by atom probe tomography. Scr Mater. 2015;96:13–16. doi: 10.1016/j.scriptamat.2014.09.031
  • Capdevila C, Caballero F, de Andrés C. Austenite grain size effects on isothermal allotriomorphic ferrite formation in 0.37 C-1.45 Mn-0.11 V microalloyed steel. Mater Trans. 2003;44:1087–1095. doi: 10.2320/matertrans.44.1087
  • Bai Y, Guo H, Yang SW, et al. Influence of austenite grain size on the crystallography of allotriomorphic ferrite in a low carbon steel. Adv Mater Res. 2012;535–537:605–610.
  • Wang XM, He XL. Effect of boron addition on structure and properties of Low carbon bainitic steels. ISIJ Int. 2002;42:S38–S46. doi: 10.2355/isijinternational.42.Suppl_S38
  • Lee HW, Kim YH, Lee SH, et al. Effect of boron contents on weldability in high strength steel. J Mech Sci Technol. 2007;21:771–777. doi: 10.1007/BF02916355
  • Hwang B, Suh DW, Kim SJ. Austenitizing temperature and hardenability of low-carbon boron steels. Scr Mater. 2011;64:1118–1120. doi: 10.1016/j.scriptamat.2011.03.003
  • Shigesato G, Fujishiro T, Hara T. Boron segregation to austenite grain boundary in low alloy steel measured by aberration corrected STEM-EELS. Mater Sci Eng A. 2012;556:358–365. doi: 10.1016/j.msea.2012.06.099
  • Chakrabarti D, Davis C, Strangwood M. Characterisation of bimodal grain structures in HSLA steels. Mater Charact. 2007;58:423–438. doi: 10.1016/j.matchar.2006.06.014
  • ASTM E8/E8M-09. Standard test methods for tension testing of metallic materials, Annu. B. ASTM stand. West Conshohocken (PA): ASTM; 2009.
  • ASTM E23-09. Standard test method for notched bar impact testing of metallic materials, Annu. B. ASTM stand. West Conshohocken (PA): ASTM; 2009.
  • Boratto F, Barbosa R, Yue S, et al. Physical metallurgy of thermomechanical processing of steels and other metals (THERMEC-88). ISIJ. 1988;1:383–390.
  • Song T, De Cooman BC. Effect of boron on the isothermal bainite transformation. Metall Mater Trans A Phys Metall Mater Sci. 2013;44:1686–1705. doi: 10.1007/s11661-012-1522-9
  • Sk MB, Ghosh A, Rarhi N, et al. Effect of reheating temperature and cooling treatment on the microstructure, texture, and impact transition behavior of heat-treated naval grade HSLA steel. Metall Mater Trans A Phys Metall Mater Sci. 2017;48:3231–3247. doi: 10.1007/s11661-017-4099-5
  • Caballero FG, Roelofs H, Hasler S, et al. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater Sci Technol. 2012;28:95–102. doi: 10.1179/1743284710Y.0000000047
  • Sakai Y, Tamanoi K, Ogura N. Application of tanh curve fit analysis to fracture toughness data of Japanese RPVS. Nucl Eng Des. 1989;115:31–39. doi: 10.1016/0029-5493(89)90257-4
  • BS7910:1999. Guide to methods for assessing the acceptability of flaws in metallic structures, UK; 1999. DOI:10.3403/02171541
  • Huang C, Yang J, Wang S. Effect of compressive deformation on the transformation behavior of an ultra-low-carbon bainitic steel. Mater Trans. 1993;34:658–668. Available from: https://www.jim.or.jp/journal/e/pdf3/34/08/658.pdf doi: 10.2320/matertrans1989.34.658
  • Shipway PH, Bhadeshia HKDH. The effect of small stresses on the kinetics of the bainite transformation. Mater Sci Eng A. 1995;201:143–149. doi: 10.1016/0921-5093(95)09769-4
  • American Petroleum Institute. Specification for line pipe. ANSI/API specification 5L. 45th ed. Washington (DC): American Petroleum Institute; 2012.
  • Gladman T. The physical metallurgy of microalloyed steels. Maney; 2002. Available from: http://books.google.co.in/books?id=1CpCPgAACAAJ
  • Bhadeshia HKDH. Bainite in steel. 2nd ed. London: Institute of Materials; 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.