355
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Mechanical behaviour and microstructure of heat-treated Cu–Ni–Si alloy

, , , ORCID Icon & ORCID Icon
Pages 939-948 | Received 26 Feb 2018, Accepted 04 Jul 2018, Published online: 18 Jul 2018

References

  • Zhao D, Dong QM, Liu P, et al. Aging behavior of Cu-Ni-Si alloy. Mater Sci Eng: A. 2003;361:93–99.
  • Liu P, Kang BX., Cao XG, et al. Strengthening mechanisms in a rapidly solidified and aged Cu–Cr alloy. J Mater Sci. 2000;35:1691–1694.
  • Liu P, Kang BX, Cao XG, et al. Aging precipitation and recrystallization of rapidly solidified Cu–Cr–Zr–Mg alloy. Mater Sci Eng A. 1999;265:262–267.
  • Fernee H, Nairn J, Atrens A, et al. Precipitation hardening of Cu–Fe–Cr alloys. J Mater Sci. 2001;36:2711–2719.
  • Ryu HJ, Baik HK, Hong SH, et al. Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe. J Mater Sci. 2000;35:3641–3646.
  • Altenberger I, Kuhn H-A, Muller HR, et al. Material properties of high-strength beryllium-free copper alloys. Int J Mater Prod Technol. 2015;50(2):124.
  • Lei Q, Li Z, Xiao T, et al. A new ultrahigh strength Cu-Ni-Si alloy. Intermetallics. 2013;42:77–84.
  • ASM International. “ASM Specialty Handbook Copper and Copper Alloys”, 2001.
  • Tsubakino H, Nozato R, Yamamoto A. Precipitation sequence for simultaneous continuous and discontinuous modes in Cu-Be binary alloys. Mater Sci Technol. 1993;9:288–294.
  • Monzen R, Watanabe C. Microstructure and mechanical properties of Cu-Ni-Si alloys. Materials Science and Engineering. 2008;483–484:117–119.
  • Lei Q, Li Z, Gao Y, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes. J Alloys Compd. 2017;695:2413–2423.
  • Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling. J Alloys Compd. 2006;417:116–120.
  • Jia L, Lin X, Xie H, et al. Abnormal improvement on electrical conductivity of Cu-Ni-Si alloys resulting from semi-isothermal treatment. Mater Lett. 2012;77:107–109.
  • Xiao X-P, Xiong B-Q, Wang Q-S, et al. Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments. Rare Met. 2013;32(2):144–149.
  • Corson MG. Copper hardened by a new method. Zeitschrift für Metallkunde. 1927;19:370.
  • Cheng JY, Tang BB, Yu FX, et al. Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging. J Alloys Compd. 2014;614:189–195.
  • Lockyer SA, Noble FW. Precipitate structure in a Cu-Ni-Si alloy. J Mater Sci Technol. 1994;29:218–226.
  • Massalski TB, Bennett LH, Murray JL, et al. Binary alloy phase diagrams. Metals Park, Ohio: ASM Int; 1986.
  • Schlesinger ME. Thermodynamics of solid transition-metal silicides. Chem Rev 1990;90:607–628.
  • Robertson WD, Grenier EG, Nole VF. The structure and associated properties of an age hardening copper alloy. Trans Metall Soc AIME. 1961;221:503–512.
  • Liu X, Xiang S, Yang S, et al. Experimental investigation of phase equilibria in the Cu-Ni-Si ternary system. J Alloys Compd. 2013;578:439–447.
  • Donoso E, Espinoza R, Dianez MJ, et al. Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at.%) alloy. Mater Sci Eng A. 2012;556:612–616.
  • Yan-lin J, Ming-pu W, Chang C, et al. Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy. J Alloys Compd. 2013;557:147–151.
  • Hu T, Chen JH, Liu JZ, et al. The crystallographic and morphological evolution of the strengthening precipitates in CuNiSi alloys. Acta Materiallia. 2013;61:1210–1219.
  • Semboshi S, Sato S, Iwase A, et al. Discontinuous precipitates in age-hardening Cu-Ni-Si alloys. Mater Charact. 2016;115:39–45.
  • Azzeddine H, Mehdi B, Hennet L, et al. An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu-Ni-Si alloy. Mater Sci Eng A. 2014;597:288–294.
  • Li Z, Pan ZY, Zhao YY, et al. Wang: “microstructure and properties of high-conductivity, super-high strength Cu-8.0-1.8Si-0.6Sn-0.15Mg alloy”. J Mater Res. 2009;24:2123–2129.
  • Gholami M, Altenberger I, Vesely J, et al. Effects of severe plastic deformation on transformation kinetics of precipitates in CuNi3Si1Mg. Mater Sci Eng A. 2016;676:156–164.
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Oxford, UK: Elsevier; 2004.
  • Hosford WF. Solid mechanics. New York, US: Cambridge University Press; 2013.
  • Hull D. Fractography: observing, measuring and interpreting fracture surface topography. Cambridge, UK: Cambridge University Press; 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.