372
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of thermal treatment on the evolution of delta ferrite in 11Cr–3Co–2.3W steel

, , , , &
Pages 2087-2096 | Received 08 Mar 2018, Accepted 22 Jul 2018, Published online: 29 Aug 2018

References

  • Kaybyshev R, Skorobogatykh V, Shchenkova I. New martensitic steels for fossil power plant: creep resistance. Phys Met Met. 2010;109:186–200. doi: 10.1134/S0031918X10020110
  • Dudko V, Belyakov A, Molodov D, et al. Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep. Metall MaterTrans A. 2013;44A:162–172. doi: 10.1007/s11661-011-0899-1
  • Yamada K, Igarashi M, Muneki S, et al. Effect of Co addition on microstructure in high Cr ferritic steels. ISIJ Int. 2007;43:1438–1443. doi: 10.2355/isijinternational.43.1438
  • Abe F. Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution. Mater Sci Eng A. 2009;510:64–69. doi: 10.1016/j.msea.2008.04.118
  • Kim T, Han C, Kim S, et al. Effects of ferrite content on the tensile strength and impact toughness of 2.25Cr-1Mo-0.25 V steels. Mater Sci Forum. 2010;655:537–555.
  • Xiong Y, He T, Li H, et al. Annealing effects on microstructure and mechanical properties of cryorolled Fe-25Cr-20Ni steel. Metall Mater Trans A. 2017;703:68–75.
  • Li S, Eliniyaz Z, Sun F, et al. Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel. Metall Mater Trans A. 2013;559:882–888.
  • Fedorova I, Kipelova A, Belyakov A, et al. Microstructure evolution in an advanced 9 pct Cr martensitic steel during creep at 923 K (650 °C). Metall Mater Trans A. 2013;44A:128–135. doi: 10.1007/s11661-012-1182-9
  • Li S, Eliniyaz Z, Zhang L, et al. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep. Mater Charact. 2012;73:144–152. doi: 10.1016/j.matchar.2012.08.009
  • Kipelova A, Odnobokova M, Belyakov A, et al. Effect of Co on creep behavior of a P911 steel. Metall Mater Trans A. 2012;44A:577–583.
  • Kazeminezhad M. Prediction of the mechanical properties of rods after cold forging and heat treatment. Int J Adv Manuftech. 2013;69:2071–2079. doi: 10.1007/s00170-013-5189-1
  • Kostka A, Tak KG, Hellmig RJ, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Mater. 2007;55:539–550. doi: 10.1016/j.actamat.2006.08.046
  • Kipelova A, Kaibyshev R, Belyakov A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions. Mater Sci Eng A. 2011;528:1280–1286. doi: 10.1016/j.msea.2010.10.006
  • Yan P, Liu Z, Bao H, et al. Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel. Mater Sci Eng A. 2014;597:148–156. doi: 10.1016/j.msea.2013.12.068
  • Chen S, Jin X, Rong L. Improvement in high temperature oxidation resistance of 9%Cr ferritic–martensitic steel by enhanced diffusion of Mn. Oxid Met. 2016;85:189–203. doi: 10.1007/s11085-015-9596-6
  • Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A. 2016;654:1–12. doi: 10.1016/j.msea.2015.12.027
  • Fedorova I, Kipelova A, Belyakov A, et al. Microstructure evolution in an advanced 9 pct Cr martensitic steel during creep at 923 K(650 °C). Metall Mater Trans A. 2013;44:128–135. doi: 10.1007/s11661-012-1182-9
  • Neidel A, Fischer B, Riesenbeck S, et al. Transformation of delta ferrite into sigma phase in metastable austenitic stainless steels after long-term high-temperature service exposure. Prakt Metallogr. 2014;51:259–279. doi: 10.3139/147.110278
  • Soleymani S, Ojo O, Richards N. Effect of composition on the formation of delta ferrite in 304L austenitic stainless steels during hot deformation. J Mater Eng Perform. 2015;24:499–504. doi: 10.1007/s11665-014-1290-3
  • Beres L. Proposed modification to Schaeffler diagram for chrome equivalents and carbon for more accurate prediction of martensite content. Weld J. 1998;77:273–280.
  • Ryu SH, Yu J. A new equation for the Cr equivalent in 9 to 12 pct Cr steels. Metall Mater Trans A. 1998;29:1573–1578. doi: 10.1007/s11661-998-0080-7
  • Wieczerzak K, Bala P, Dziurka R, et al. Experimental and thermodynamic study of selected in-situ composites from the Fe-Cr-Ni-Mo-C system. Arch Metall Mater. 2016;61:1241–1247. doi: 10.1515/amm-2016-0205
  • Fedoseeva A, Dudova N, Kaibyshev R. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel. Mater Sci Eng A. 2016;654:1–12. doi: 10.1016/j.msea.2015.12.027
  • Hamada K, Tokuno K, Tomita Y, et al. Effects of precipitate shape on high temperature strength of modified 9Cr–1Mo steels. SIJ Int. 1995;35:86–91.
  • Tsuchida Y, Okamoto K, Tokunaga Y. Improvement of creep rupture strength of 9Cr1Mo-V-Nb-N steel by thermomechanical control process. ISIJ INT. 2007;35:309–316. doi: 10.2355/isijinternational.35.309
  • Panait C, Zielińska-Lipiec A, Koziel T, et al. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600°C for more than 100,000 h. Mater Sci Eng A. 2010;527:4062–4069. doi: 10.1016/j.msea.2010.03.010
  • Li H, Mitchell D. Microstructural characterization of P91 steel in the virgin, service exposed and post-service re-normalized conditions. Steel Res Int. 2013;84:1302–1308. doi: 10.1002/srin.201300055
  • Lu Q, Xu W, Zwaag SVD. The computational design of w and co-containing creep resistant steels with barely coarsening laves phase and M23C6 as the strengthening precipitates. Metall Mater Trans A. 2014;45:6067–6074. doi: 10.1007/s11661-014-2557-x
  • Abe F. Effect of fine precipitation and subsequent coarsening of Fe2W laves phase on the creep deformation behavior of tempered martensitic 9Cr-W steels. Metall Mater Trans A. 2005;36:321–332. doi: 10.1007/s11661-005-0305-y
  • Akhlaghi M, Steiner T, Meka SR, et al. Lattice-parameter change induced by accommodation of precipitate/matrix misfit; misfitting nitrides in ferrite. Acta Mater. 2015;98:254–262. doi: 10.1016/j.actamat.2015.07.017
  • Shen Y, Ji B, Zhou X. M5c2 carbide precipitates in a high-Cr martensitic steel. Met Mater Int. 2014;20:503–506. doi: 10.1007/s12540-014-3014-5
  • Fedoseeva A, Kozlov P, Dudko V, et al. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C. Phys Met Metallogr. 2015;116:1047–1056. doi: 10.1134/S0031918X15080049
  • Kobayashi S, Sawada K, Hara T, et al. The formation and dissolution of residual δ ferrite in ASME Grade 91 steel plates. Mater Sci Eng A. 2014;592:241–248. doi: 10.1016/j.msea.2013.10.058
  • Zhang XF, Komizo Y. Visual analysis of solidification and δ–γ transformations in steels. Mater Sci Technol. 2013;29:631–635. doi: 10.1179/1743284712Y.0000000183
  • Suresh G, Kishor P, Dasgupta A, et al. Microstructure and corrosion behavior of laser melted 304L SS Weldment in nitric acid medium. J Mater Eng Perform. 2016;26:1–10.
  • Neidel A, Fischer B, Riesenbeck S, et al. Transformation of delta ferrite into sigma phase in metastable austenitic stainless steels after long-term high-temperature service exposure. Prakt Metallogr. 2014;51:259–279. doi: 10.3139/147.110278
  • Ganesh BJ, Raju S, Rai AK, et al. Differential scanning calorimetry study of diffusional and martensitic phase transformations in some 9 wt.%Cr low carbon ferritic steels. Mater Sci Technol. 2011;27:500–512. doi: 10.1179/026708309X12506933873260
  • Brühl F, Cerjak H, Schwaab P, et al. Metallkundliche Untersuchungen am Grundwerkstoff und an Schweißverbindungen des 9%-Chromstahles X10 CrMoVNb 9 1. Steel Res. 1991;62:75–82. doi: 10.1002/srin.199101254
  • Li J, Liu J, Jiang B, et al. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels. Met Mater Int. 2017;2:239–245. doi: 10.1007/s12540-017-6473-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.