523
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The influence of temperature on deformation-induced martensitic transformation in 301 stainless steel

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2114-2125 | Received 02 May 2018, Accepted 04 Aug 2018, Published online: 22 Aug 2018

References

  • Ferreira H, Santana de Carvalho S, de Lima Neto P, et al. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance. Mater Res. 2007;10:359–366. doi: 10.1590/S1516-14392007000400007
  • Wong SL, Madivala M, Prahl U, et al. A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater. 2016;118:140–151. doi: 10.1016/j.actamat.2016.07.032
  • Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003;43:438–446. doi: 10.2355/isijinternational.43.438
  • Moat RJ, Zhang SY, Kelleher J, et al. Work hardening induced by martensite during transformation-induced plasticity in plain carbon steel. Acta Mater. 2012;60:6931–6939. doi: 10.1016/j.actamat.2012.08.011
  • Olson G, Cohen M. Stress-assisted isothermal martensitic transformation: application to TRIP steels. Metall Trans A. 1982;13:1907–1914. doi: 10.1007/BF02645934
  • Talonen, J. Effect strain-induced α’-martensite transformation on mechanical properties of metastable austenitic stainless steels [PhD]. Department of Mechanical Engineering, Helsinki University of Technology; 2007.
  • Lecroisey F, Pineau A. Martensitic transformations induced by plastic deformation in the Fe-Ni-Cr-C system. Metall Trans. 1972;3:391–400. doi: 10.1007/BF02642042
  • Zackay V, Parker E, Fahr D, et al. The enhancement of ductility in high-strength steels. ASM Trans Quart. 1967.
  • Tomita Y, Iwamoto T. Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. Int J Mech Sci. 1995;37:1295–1305. doi: 10.1016/0020-7403(95)00039-Z
  • Bain EC, Dunkirk NY. The nature of martensite. trans. AIME. 1924;70:25–47.
  • Frank F. Martensite. Acta Metall. 1953;1:15–21. doi: 10.1016/0001-6160(53)90005-4
  • Bolling GF, Richman RH. The plastic deformation of ferromagnetic face-centred cubic Fe-Ni-C alloys. Philos Mag. 1969;19:247–264. doi: 10.1080/14786436908217783
  • Angel T. Formation of martensite in austenitic stainless steels. J Iron Steel Inst. 1954;177:165–174.
  • Delogu F. A few details of the austenite to martensite phase transformation in 304 stainless steel powders under mechanical processing. Acta Mater. 2011;59:2069–2074. doi: 10.1016/j.actamat.2010.12.007
  • Tsuchida N, Yamaguchi Y, Morimoto Y, et al. Effects of temperature and strain rate on TRIP effect in SUS301L metastable austenitic stainless steel. ISIJ Int. 2013;53:1881–1887. doi: 10.2355/isijinternational.53.1881
  • Tian Y, Gorbatov OI, Borgenstam A, et al. Deformation microstructure and deformation-induced martensite in austenitic Fe-Cr-Ni alloys depending on stacking fault energy. Metall Mater Trans A Phys Metall Mater Sci. 2016;48:1–7. doi: 10.1007/s11661-016-3839-2
  • Das YB, Forsey AN, Simm TH, et al. In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel. Mater Des. 2016;112:107–116. doi: 10.1016/j.matdes.2016.09.057
  • Tian Y, Lienert U, Borgenstam A, et al. Martensite formation during incremental cooling of Fe-Cr-Ni alloys: An in-situ bulk X-ray study of the grain-averaged and single-grain behavior. Scr Mater. 2017;136:124–127. doi: 10.1016/j.scriptamat.2017.04.020
  • Patel JR, Cohen M. Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1953;1:531–538. doi: 10.1016/0001-6160(53)90083-2
  • Wayman CM, Bhadeshia HKDH. Physical metallurgy. Physical metallurgy II. Elsevier; 1996.
  • Staudhammer KP, Murr LE, Hecker SS. Nucleation and evolution of strain-induced martensitic (b.c.c.) embryos and substructure in stainless steel: A transmission electron microscope study. Acta Metall. 1983;31:267–274. doi: 10.1016/0001-6160(83)90103-7
  • Hecker SS, Stout MG, Staudhammer KP, et al. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: part 1. Microstructural study. Metall Trans A. 1982;13:627–635. doi: 10.1007/BF02644427
  • Bhadeshia H. Worked examples in the geometry of crystals. London: The Institute of Materials; 1987.
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. Martensitic transformation of individual grains in low-alloyed TRIP steels. Scr Mater. 2007;56:421–424. doi: 10.1016/j.scriptamat.2006.10.041
  • Blondé R, Jimenez-Melero E, Zhao L, et al. High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater. 2012;60:565–577. doi: 10.1016/j.actamat.2011.10.019
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. The effect of aluminium and phosphorus on the stability of individual austenite grains in TRIP steels. Acta Mater. 2009;57:533–543. doi: 10.1016/j.actamat.2008.09.040
  • Jimenez-Melero E, van Dijk NH, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels. Acta Mater. 2007;55:6713–6723. doi: 10.1016/j.actamat.2007.08.040
  • Blondé R, Jimenez-Melero E, Zhao L, et al. Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading. Mater Sci Eng A. 2014;618:280–287. doi: 10.1016/j.msea.2014.09.008
  • Olson GB, Cohen M. A mechanism for the strain-induced martensitic transformations. J Less Common Met. 1972;28:107–118. doi: 10.1016/0022-5088(72)90173-7
  • Olson G, Cohen M. Kinetics of strain-induced martensitic nucleation. Metall Trans A. 1975;6A:791–795. doi: 10.1007/BF02672301
  • Talonen J, Hänninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007;55:6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • Hedström P, Lienert U, Almer J, et al. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel. Scr Mater. 2007;56:213–216. doi: 10.1016/j.scriptamat.2006.10.009
  • Hedström P. Deformation and Martensitic Phase Transformation in Stainless Steels. Doctoral Thesis. Lulea University of Technology. Division of Engineering Materials. 2007.
  • Hedström P, Han TS, Lienert U, et al. Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading. Acta Mater. 2010;58:734–744. doi: 10.1016/j.actamat.2009.09.053
  • Lee TH, Shin E, Oh CS, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater. 2010;58:3173–3186. doi: 10.1016/j.actamat.2010.01.056
  • Lee TH, Ha H-Y, Kang J-Y, et al. An intersecting-shear model for strain-induced martensitic transformation. Acta Mater. 2013;61:7399–7410. doi: 10.1016/j.actamat.2013.08.046
  • Abreu HFGD, Silva MJGD, Herculano LFG, et al. Texture analysis of deformation induced martensite in an AISI 301L stainless steel: microtexture and macrotexture aspects. Mater Res. 2009;12:291–297. doi: 10.1590/S1516-14392009000300008
  • Edwards L, Fitzpatrick M, Daymond M, et al. ENGIN-X: a neutron stress diffractometer for the 21st century. Proceedings of the 6th International Conference; 2000.
  • Santisteban JR, Daymond MR, James JA, et al. ENGIN-X: a third-generation neutron strain scanner. J Appl Crystallogr. 2006;39:812–825. doi: 10.1107/S0021889806042245
  • Kirichek O, Timms JD, Kelleher JF, et al. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6K to 300K. Rev Sci Instrum. 2017;88:025103. doi: 10.1063/1.4974815
  • ASTM. ASTM E8 / E8M – 13a standard test methods for tension testing of metallic materials.
  • Fitzpatrick ME, Lodini A. Analysis of residual stress by diffraction using neutron and synchrotron radiation. 2003.
  • Oliver E, Mori T, Daymond M, et al. Neutron diffraction study of stress-induced martensitic transformation and variant change in Fe–Pd. Acta Mater. 2003;51:6453–6464. doi: 10.1016/j.actamat.2003.08.017
  • Paddea S. Stress and creep damage evolution in materials for ultra-supercritical power plants. Vol. 1. The Open University; 2013.
  • Harjo S, Tsuchida N, Abe J, et al. Martensite phase stress and the strengthening mechanism in TRIP steel by neutron diffraction. Sci Rep. 2017;7(15149.
  • Hutchings MT, Withers PJ, Holden TM, et al. Introduction to characterization of residual stress by neutron diffraction. Mater Today. 2005;8. ISBN 0-203-40281-2.
  • ASTM. Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation 1. ASTM. 2009;03:1–7.
  • De AK, Murdock DC, Mataya MC, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr Mater. 2004;50:1445–1449. doi: 10.1016/j.scriptamat.2004.03.011
  • De AK, Speer JG, Matlock DK, et al. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall Mater Trans A. 2006;37:1875–1886. doi: 10.1007/s11661-006-0130-y
  • Spencer K, Embury JD, Conlon KT, et al. Strengthening via the formation of strain-induced martensite in stainless steels. Mater Sci Eng A. 2004;387–389:873–881. doi: 10.1016/j.msea.2003.11.084
  • Mangonon PL, Thomas G. The martensite phases in 304 stainless steel. Metall Trans. 1970;1:1577–1586. doi: 10.1007/BF02642003
  • Brooks JW, Loretto MH, Smallman RE. In situ observations of the formation of martensite in stainless steel. Acta Metall. 1979;27:1829–1838. doi: 10.1016/0001-6160(79)90073-7
  • Brooks JW, Loretto MH, Smallman RE. Direct observations of martenstte nuclei in stainless steel. Acta Metall. 1979;27:1839–1847. doi: 10.1016/0001-6160(79)90074-9
  • Yang XS, Sun S, Wu XL, et al. Dissecting the mechanism of martensitic transformation via atomic-scale observations. Sci Rep. 2014;4:1–7.
  • Gey N, Petit B, Humbert M. Electron backscattered diffraction study of ε/α′ martensitic variants induced by plastic deformation in 304 stainless steel. Metall Mater Trans A. 2005;36A:3291–3299. doi: 10.1007/s11661-005-0003-9
  • Das YB, Simm TH, Forsey AN, et al. An experimental study of plastic deformation and transformation in austenitic stainless steel. 2001. Unpublished work.
  • Bachmann F, Hielscher R, Schaeben H. Grain detection from 2d and 3d EBSD data – specification of the MTEX algorithm. Ultramicroscopy. 2011;111:1720–1733. doi: 10.1016/j.ultramic.2011.08.002
  • Hedström P, Lindgren LE, Almer J, et al. Load partitioning and strain-induced martensite formation during tensile loading of a metastable austenitic stainless steel. Metall Mater Trans A Phys Metall Mater Sci. 2009;40:1039–1048. doi: 10.1007/s11661-009-9807-3
  • Nagy E, Mertinger V, Tranta F, et al. Deformation induced martensitic transformation in stainless steels. Mater Sci Eng A. 2004;378:308–313. doi: 10.1016/j.msea.2003.11.074
  • Choi J-Y, Jin W. Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels. Scr Mater. 1997;36:99–104. doi: 10.1016/S1359-6462(96)00338-7
  • Ennis BL, Jimenex-Melero E, Atzema EH, et al. Metastable austenite driven work-hardening behaviour in a TRIP-assisted dual phase steel. Int J Plast. 2017;88:126–139. doi: 10.1016/j.ijplas.2016.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.