390
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Sn/In additions on natural and artificial ageing of Al–Mg–Si alloys

, , , &
Pages 2136-2144 | Received 04 Jun 2018, Accepted 23 Aug 2018, Published online: 10 Sep 2018

References

  • Cristina De Stefano M, Montes-Sancho MJ, Busch T. A natural resource-based view of climate change: innovation challenges in the automobile industry. J Clean Prod 2016;139:1436–1448. doi: 10.1016/j.jclepro.2016.08.023
  • Miller WS, Zhuang L, Bottema J, et al. Recent developmet in aluminium alloys for the automotive industry. Mater Sci Eng. A. 2000;280(1):37–49. doi: 10.1016/S0921-5093(99)00653-X
  • Hirsch J, Al-Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818–843. doi: 10.1016/j.actamat.2012.10.044
  • Liu M, Čížek J, Chang CST, et al. Early stages of solute clustering in an Al–Mg–Si alloy. Acta Mater. 2015;91:355–364. doi: 10.1016/j.actamat.2015.02.019
  • Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater. 1999;47(5):1537–1548. doi: 10.1016/S1359-6454(99)00033-6
  • Jia Z, Ding L, Weng Y, et al. Effects of high temperature pre-straining on natural aging and bake hardening response of Al–Mg–Si alloys. T Nonferr Metal Soc. 2016;26(4):924–929. doi: 10.1016/S1003-6326(16)64188-2
  • Zhen L, Kang SB, Kim HW. Effect of natural aging and preaging on subsequent precipitation process of an Al-Mg-Si alloy with high excess silicon. Mater Sci Technol. 1997;13(11):905–911. doi: 10.1179/mst.1997.13.11.905
  • Jin S, Ngai T, Li L, et al. Influence of natural aging and pre-treatment on the precipitation and age-hardening behavior of Al-1.0Mg-0.65Si-0.24Cu alloy. J Alloy Compd. 2018;742:852–859. doi: 10.1016/j.jallcom.2017.10.005
  • Aruga Y, Kozuka M, Takaki Y, et al. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy. Scr Mater. 2016;116:82–86. doi: 10.1016/j.scriptamat.2016.01.019
  • Yin D, Xiao Q, Chen Y, et al. Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des. 2016;95:329–339. doi: 10.1016/j.matdes.2016.01.119
  • Weng Y, Jia Z, Ding L, et al. Combined effect of pre-aging and Ag/Cu addition on the natural aging and bake hardening in Al-Mg-Si alloys. Prog Nat Sci-Mater. 2018;28(3):363–370. doi: 10.1016/j.pnsc.2018.04.007
  • Li H, Yan Z, Cao L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body. Mater Sci Eng A. 2018;728:88–94. doi: 10.1016/j.msea.2018.05.014
  • Weng Y, Jia Z, Ding L, et al. Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys. J Alloy Compd. 2016;695:2444–2452. doi: 10.1016/j.jallcom.2016.11.140
  • Werinos M, Antrekowitsch H, Ebner T, et al. Design strategy for controlled natural aging in Al–Mg–Si alloys. Acta Mater. 2016;118:296–305. doi: 10.1016/j.actamat.2016.07.048
  • Kimura H, Hasiguti RR. Interaction of vacancies with Sn atoms and the rate of GP zone formation in an Al-Cu-Sn alloy. Acta Metall. 1961;9(12):1076–1078. doi: 10.1016/0001-6160(61)90179-1
  • Hardy HK. The aging characteristics of ternary aluminum-copper alloys with cadmium, indium, or tin. J Inst Met. 1952;80(1371):83.
  • Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: application to Al-Mg-Si alloys. Phys Rev Lett. 2014;112(22):225701. doi: 10.1103/PhysRevLett.112.225701
  • Liu C, Ma P, Zhan L, et al. Solute Sn-induced formation of composite β'/β′′ precipitates in Al-Mg-Si alloy. Scr Mater. 2018;155:68–72. doi: 10.1016/j.scriptamat.2018.06.028
  • Werinos M, Antrekowitsch H, Ebner T, et al. Hardening of Al–Mg–Si alloys: effect of trace elements and prolonged natural aging. Mater Des. 2016;107:257–268. doi: 10.1016/j.matdes.2016.06.014
  • Werinos M, Antrekowitsch H, Kozeschnik E, et al. Ultrafast artificial aging of Al–Mg–Si alloys. Scr Mater. 2016;112:148–151. doi: 10.1016/j.scriptamat.2015.09.037
  • Murray JL. The Al-ln (aluminum-indium) system. Bull Alloy Phase Diag. 1983;4(3):271–278. doi: 10.1007/BF02868666
  • McAlister AJ, Kahan DJ. The Al-Sn (aluminum-Tin) system. Bull Alloy Phase Diag. 1983;4(4):410–414. doi: 10.1007/BF02868095
  • Wolverton C. Solute–vacancy binding in aluminum. Acta Mater. 2007;55(17):5867–5872. doi: 10.1016/j.actamat.2007.06.039
  • ASTM International. Standard test method for microindentation hardness of materials. West Conshohocken: ASTM International; 2017; Standard No. ASTM E384-17.
  • ASTM International. Standard test method for determining electrical conductivity using the electromagnetic (eddy current) method. West Conshohocken: ASTM International; 2017; Standard No. ASTM E1004-17.
  • Edwards GA, Stiller K, Dunlop GL, et al. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998;46(11):3893–3904. doi: 10.1016/S1359-6454(98)00059-7
  • Xiang W, Shahrzad E, David JL. The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111. Metall Mater Trans A. 2006;37(9):2691–2699. doi: 10.1007/BF02586103
  • Marioara CD, Andersen SJ, Zandbergen HW, et al. The influence of alloy composition on precipitates of the Al-Mg-Si system. Metall Mater Trans A. 2005;36(3):691–702. doi: 10.1007/s11661-005-0185-1
  • Esmaeili S, Lloyd DJ, Poole WJ. Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111. Mater Lett. 2005;59(5):575–577. doi: 10.1016/j.matlet.2004.10.052
  • Aruga Y, Kim S, Kozuka M, et al. Effects of cluster characteristics on two-step aging behavior in Al-Mg-Si alloys with different Mg/Si ratios and natural aging periods. Mater Sci Eng A. 2018;718:371–376. doi: 10.1016/j.msea.2018.01.086
  • Fallah V, Langelier B, Ofori-Opoku N, et al. Cluster evolution mechanisms during aging in Al–Mg–Si alloys. Acta Mater. 2016;103:290–300. doi: 10.1016/j.actamat.2015.09.027
  • Hirosawa S, Nakamura F, Sato T. First-Principles calculation of interaction energies between solutes and/or vacancies for predicting atomistic behaviors of microalloying elements in aluminum alloys. Mater Sci Forum. 2007;561-565:283–286. doi: 10.4028/www.scientific.net/MSF.561-565.283
  • Banhart J, Chang CST, Liang Z, et al. Natural aging in Al-Mg-Si alloys – a process of unexpected complexity. Adv Eng Mater. 2010;12(7):559–571. doi: 10.1002/adem.201000041
  • Atabay SE, Esen Z, Dericioglu AF. Effect of Sn alloying on the diffusion bonding behavior of Al-Mg-Si alloys. Metall Mater Trans A. 2017;48(7):3181–3187. doi: 10.1007/s11661-017-4089-7
  • Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316(1):11–17. doi: 10.1016/S0921-5093(01)01247-3
  • Pogatscher S, Antrekowitsch H, Leitner H, et al. Mechanisms controlling the artificial aging of Al–Mg–Si alloys. Acta Mater. 2011;59(9):3352–3363. doi: 10.1016/j.actamat.2011.02.010
  • Du Y, Chang YA, Huang B, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng A. 2003;363(1-2):140–151. doi: 10.1016/S0921-5093(03)00624-5
  • Zandbergen MW, Xu Q, Cerezo A, et al. Study of precipitation in Al–Mg–Si alloys by atom probe tomography I. microstructural changes as a function of ageing temperature. Acta Mater. 2015;101:136–148. doi: 10.1016/j.actamat.2015.08.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.