750
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Texture evolution in stainless steel processed by selective laser melting and annealing

, , &
Pages 2223-2230 | Received 16 May 2018, Accepted 07 Sep 2018, Published online: 24 Sep 2018

References

  • Debroy T, Wei HL, Zuback JS, et al. Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci. 2018;92:112–224. doi: 10.1016/j.pmatsci.2017.10.001
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392. doi: 10.1016/j.actamat.2016.07.019
  • Yadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatigue. 2017;98:14–31. doi: 10.1016/j.ijfatigue.2017.01.001
  • Zheng B, Zhou Y, Smugeresky JE, et al. Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: part II. Experimental investigation and discussion. Metall Mater Trans A. 2008;39:2237–2245. doi: 10.1007/s11661-008-9566-6
  • Manvatkar VD, Gokhale AA, Jagan Reddy G, et al. Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel. Metall Mater Trans A. 2011;42:4080–4087. doi: 10.1007/s11661-011-0787-8
  • Ma M, Wang Z, Wang D, et al. Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt Laser Tech. 2013;45:209–216. doi: 10.1016/j.optlastec.2012.07.002
  • Niendorf T, Leuders S, Riemer A, et al. Highly anisotropic steel processed by selective laser melting. Metall Mater Trans A. 2013;44:794–796. doi: 10.1007/s11663-013-9875-z
  • Zhang K, Wang S, Liu W, et al. Characterisation of stainless steel parts by laser metal deposition shaping. Mater Des. 2014;55:104–119. doi: 10.1016/j.matdes.2013.09.006
  • Yadollahi A, Shamsaei N, Thompson SM, et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater Sci Eng A. 2015;644:171–183. doi: 10.1016/j.msea.2015.07.056
  • Wang Z, Palmer TA, Beese AM. Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 2016;110:226–235. doi: 10.1016/j.actamat.2016.03.019
  • Wang X, Deng D, Qi M, et al. Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication. Opt Laser Tech. 2016;80:138–144. doi: 10.1016/j.optlastec.2016.01.002
  • Trelewicz JR, Halada GP, Donaldson OK, et al. Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel. JOM. 2016;68:850–859. doi: 10.1007/s11837-016-1822-4
  • Röttger A, Geenen K, Windmann M, et al. Comparison of microstructure and mechanical properties of 316 L austenitic steel processed by selective laser melting with hot-isostatic pressed and cast material. Mater Sci Eng A. 2016;678:365–376. doi: 10.1016/j.msea.2016.10.012
  • Zietala M, Durejko T, Polanski M, et al. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping. Mater Sci Eng A. 2016;677:1–10. doi: 10.1016/j.msea.2016.09.028
  • Li J, Deng D, Hou X, et al. Microstructure and performance optimisation of stainless steel formed by laser additive manufacturing. Mater Sci Tech. 2016;32:1223–1230. doi: 10.1080/02670836.2015.1114774
  • Guo P, Zou B, Huang C, et al. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J Mater Proc Tech. 2017;240:12–22. doi: 10.1016/j.jmatprotec.2016.09.005
  • Bartolomeu F, Buciumeanu M, Pinto E, et al. 316L stainless steel mechanical and tribological behavior – a comparison between selective laser melting, hot pressing and conventional casting. Addit Manuf. 2017;16:81–89. doi: 10.1016/j.addma.2017.05.007
  • Shuming Z, Xianfeng S, Jialin Y, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting. Opt Laser Tech. 2018;103:239–250. doi: 10.1016/j.optlastec.2018.01.005
  • Wang YM, Voising T, McKeown JT, et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater. 2017;17:63–71. doi: 10.1038/nmat5021
  • Wang D, Song C, Yang Y, et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des. 2016;100:291–299. doi: 10.1016/j.matdes.2016.03.111
  • Saeidi K, Gao X, Zhong Y, et al. Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A. 2015;625:221–229. doi: 10.1016/j.msea.2014.12.018
  • Casati R, Lemke J, Vedani MJ. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. Mater Sci Tech. 2016;32:738–744. doi: 10.1016/j.jmst.2016.06.016
  • AlMangour B, Grzesiak D, Yang JM. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Comp. 2017;728:424–435. doi: 10.1016/j.jallcom.2017.08.022
  • AlMangour B, Grzesiak D, Borkar T, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Mater Des. 2018;138:119–128. doi: 10.1016/j.matdes.2017.10.039
  • AlMangour B, Grzesiak D, Yang JM. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Comp. 2016;680:480–493. doi: 10.1016/j.jallcom.2016.04.156
  • Sun Z, Tan X, Tor SB, et al. Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 2018;10:127–136. doi: 10.1038/s41427-018-0018-5
  • AlMangour B, Baek MS, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting. Mater Sci Eng A. 2018;712:812–818. doi: 10.1016/j.msea.2017.11.126
  • Gu D, Chen H. Selective laser melting of high strength and toughness stainless steel parts: the roles of laser hatch style and part placement strategy. Mater Sci Eng A. 2018;725:419–427. doi: 10.1016/j.msea.2018.04.046
  • AlMangour B, Grzesiak D, Chen J, et al. Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: experimental and simulation methods. J. Mater. Proc. Tech. 2018;257:288–301. doi: 10.1016/j.jmatprotec.2018.01.028
  • Moat RJ, Pinkerton AJ, Li L, et al. Crystallographic texture and microstructure of pulsed diode laser-deposited Waspaloy. Acta Mater. 2009;57:1220–1229. doi: 10.1016/j.actamat.2008.11.004
  • Thijs L, Kempen K, Kruth JP, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819. doi: 10.1016/j.actamat.2012.11.052
  • Thijs L, Montero-Sistiaga ML, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Mater. 2013;61:4657–4668. doi: 10.1016/j.actamat.2013.04.036
  • Antonysamy AA, Meyer J, Prangnell PB. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Char. 2013;84:153–168. doi: 10.1016/j.matchar.2013.07.012
  • Kunze K, Etter T, Grässlin J, et al. Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM). Mater Sci Eng A. 2015;620:213–222. doi: 10.1016/j.msea.2014.10.003
  • Carter LN, Martin C, Withers PJ, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloy Comp. 2014;615:338–347. doi: 10.1016/j.jallcom.2014.06.172
  • Zhou X, Li K, Zhang D, et al. Textures formed in a CoCrMo alloy by selective laser melting. J Alloy Comp. 2015;631:153–164. doi: 10.1016/j.jallcom.2015.01.096
  • Divya VD, Muñoz-Moreno R, Messé OMDM, et al. Microstructure of selective laser melted CM247LC nickel-based superalloy and its evolution through heat treatment. Mater Char. 2016;114:62–74. doi: 10.1016/j.matchar.2016.02.004
  • Muñoz-Moreno R, Divya VD, Driver SL, et al. Effect of heat treatment on the microstructure, texture and elastic anisotropy of the nickel-based superalloy CM247LC processed by selective laser melting. Mater Sci Eng A. 2016;674:529–539. doi: 10.1016/j.msea.2016.06.075
  • Helmer H, Bauereiss A, Singer RF, et al. Grain structure evolution in Inconel 718 during selective electron beam melting. Mater Sci Eng A. 2016;668:180–187. doi: 10.1016/j.msea.2016.05.046
  • Popovich VA, Borisov EV, Popovich AA, et al. Functionally graded Inconel 718 processed by additive manufacturing: crystallographic texture, anisotropy of microstructure and mechanical properties. Mater Des. 2017;114:441–449. doi: 10.1016/j.matdes.2016.10.075
  • Cloots M, Kunze K, Uggowitzer PJ, et al. Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy Mar-M509 produced by selective laser melting. Mater Sci Eng A. 2016;658:68–76. doi: 10.1016/j.msea.2016.01.058
  • Ishimoto T, Hagihara K, Hisamoto K, et al. Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus. Scripta Mater. 2017;132:34–38. doi: 10.1016/j.scriptamat.2016.12.038
  • Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Mater. Des. 2017;134:139–150. doi: 10.1016/j.matdes.2017.08.049
  • Wan HY, Zhou ZJ, Li CP, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. J Mater Sci Tech. 2018;34:1799–1804. doi: 10.1016/j.jmst.2018.02.002
  • Fang XY, Li HQ, Wang M, et al. Characterization of texture and grain boundary character distributions of selective laser melted Inconel 625 alloy. Mater Char. 2018, in press.
  • Sun SH, Hagihara K, Nakano T. Effect of scanning strategy on texture formation in Ni-25 at.%Mo alloys fabricated by selective laser melting. Mater Des. 2018;140:307–316. doi: 10.1016/j.matdes.2017.11.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.