1,937
Views
1
CrossRef citations to date
0
Altmetric
Critical Assessment

Critical assessment 31: on the modelling of tertiary creep in single-crystal superalloys

ORCID Icon &
Pages 2174-2201 | Received 26 Jun 2018, Accepted 21 Sep 2018, Published online: 25 Oct 2018

References

  • Reed RC. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press; 2006.
  • Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propulsion Power. 2006;22(2):361–374. doi: 10.2514/1.18239
  • Pollock TM. Alloy design for aircraft engines. Nat Mater. 2016;15(8):809–815. doi: 10.1038/nmat4709
  • Pint BA, DiStefano JR, Wright IG. Oxidation resistance: one barrier to moving beyond Ni-base superalloys. Mater Sci Eng. 2006;415(1–2):255–263. doi: 10.1016/j.msea.2005.09.091
  • Pint BA. High-temperature corrosion in fossil fuel power generation: present and future. JOM. 2013;65(8):1024–1032. doi: 10.1007/s11837-013-0642-z
  • Reed RC, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater. 2009;57(19):5898–5913. doi: 10.1016/j.actamat.2009.08.018
  • Dyson BF, McLean M. Particle-coarsening, and tertiary creep. Acta Metallurgica. 1983;31(1):17–27. doi: 10.1016/0001-6160(83)90059-7
  • Ion JC, Barbosa A, Ashby MF, et al. The modelling of creep for engineering design. National Physical Laboratory and Division of Materials Applications; 1986.
  • Dyson BF, Gibbons TB. Tertiary creep in nickel-base superalloys: analysis of experimental data and theoretical synthesis. Acta Metallurgica. 1987;35(9):2355–2369. doi: 10.1016/0001-6160(87)90083-6
  • Barbosa A, Taylor NG, Ashby MF, et al. A model based computer analysis of creep data (Crispen): applications to nickel-base superalloys. In: Reichman S, Duhl DN, Maurer GE, et al., editors. Superalloys 1988. Warrendale (PA): TMS; 1988. p. 683–692.
  • Dyson BF, Osgerby S. Modelling and analysis of creep deformation and fracture in a 1 Cr Mo ferritic steel. National Physical Laboratory; 1993. (NPL Report DMM(A)116)
  • Manonukul A, Dunne F, Knowles D. Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus. Acta Mater. 2002;50(11):2917–2931. doi: 10.1016/S1359-6454(02)00119-2
  • Basoalto H, Sondhi SK, Dyson BF, et al. A generic microstructure-explicit model of creep in nickel-base superalloys. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 897–906
  • Dyson BF. Microstructure based creep constitutive model for precipitation strengthened alloys: theory and application. Mater Sci Tech. 2009;25(2):213–220. doi: 10.1179/174328408X369348
  • Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 2012;60(12):4888–4900. doi: 10.1016/j.actamat.2012.05.023
  • Kim YK, Kim D, Kim HK, et al. An intermediate temperature creep model for Ni-based superalloys. Int J Plasticity. 2016;79:153–175. doi: 10.1016/j.ijplas.2015.12.008
  • Rae C. Alloys by design: modelling next generation superalloys. Mater Sci Tech. 2009;25(4):479–487. doi: 10.1179/174328408X372056
  • Pollock TM, Field RD. Dislocations and high-temperature plastic deformation of superalloy single crystals. In: Nabarro FRN, Duesbery MS, editors. Dislocations in solids. (Dislocations in solids; Vol. 11). Amsterdam and Oxford: Elsevier Science; 2002. p. 547–618.
  • Reed RC, Rae CMF. Physical Metallurgy of the Nickel-based superalloys. In: Laughlin DE, Hono K, editors. Physical Metallurgy. Amsterdam, Netherlands: Elsevier; 2014. p. 2215–2290.
  • Andrade ENDC. On the Viscous flow in metals, and allied phenomena. Proc R Soc. 1910;84(567):1–12. doi: 10.1098/rspa.1910.0050
  • Dorn JE, Shepard LA. What we need to know about creep. In: Frey DN, editor. Symposium on effect of cyclic heating and stressing on metals at elevated temperatures. Philadelphia (PA): ASTM International; 1954. p. 3–28; Its Special technical publication.
  • Garofalo F. Fundamentals of creep and creep-rupture in metals. New York: Macmillan; 1965.
  • Webster GA, Cox APD, Dorn JE. A relationship between transient and steady-state creep at elevated temperatures. Metal Sci J. 1969;3(1):221–225. doi: 10.1179/msc.1969.3.1.221
  • Evans M. Predicting times to low strain for a 1CrMoV rotor steel using a projection technique. J Mater Sci. 2000;35(12):2937–2948. doi: 10.1023/A:1004770525118
  • Monden K. Creep life assessment of tin based lead free solders based on the imaginary initial strain rate. In: Thermal and thermomechanical 10th intersociety conference on phenomena in electronics systems, 2006. ITHERM 2006; San Diego, California. p. 990–996.
  • Penny RK, Marriott DL. Design for creep. 2nd ed. Dordrecht: Springer; 1995.
  • McLean M, Dyson BF. Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys. J Eng Mater Technol. 2000;122(3):273. doi: 10.1115/1.482798
  • Kachanov LM. Rupture time under creep conditions. Izv Akad Nauk SSSR, Otd Tekh Nauk. 1958;8:26–31.
  • Rabotnov YN. Creep problems in structural members. (North-Holland series in applied mathematics & mechanics; Vol. vol.7). Amsterdam: Elsevier Science Publishing Co Inc.; 1969.
  • Leckie FA, Hayhurst DR. Constitutive equations for creep rupture. Acta Metallurgica. 1977;25(9):1059–1070. doi: 10.1016/0001-6160(77)90135-3
  • Dyson B. Use of CDM in materials modeling and component creep life prediction. J Press Vessel Technol. 2000;122(3):281. doi: 10.1115/1.556185
  • Miodownik AP, Li X, Saunders N, et al. Modelling of creep in nickel based superalloys. In: Strang A, Conroy RD, Banks WM, et al., editors. Proceedings of the sixth international Charles Parsons turbine conference. London: Maney; 2003. p. 1–9.
  • Oruganti R. A new approach to dislocation creep. Acta Mater. 2012;60(4):1695–1702. doi: 10.1016/j.actamat.2011.11.051
  • Altenbach H, Skrzypek JJ, editors. Creep and damage in materials and structures. Vienna: Springer; 1999.
  • Basoalto H, Vermeulen B, Brooks JW, et al. A new hyperbolic tangent modelling approach for the creep behavior of the single crystal nickel-based superalloy CMSX4. In: Reed RC, Green KA, Caron P, et al., editors. Superalloys 2008. Warrendale, Pa.: TMS; 2008. p. 515–520.
  • Coakley J, Basoalto H, Dye D. Coarsening of a multimodal nickel-base superalloy. Acta Mater. 2010;58(11):4019–4028. doi: 10.1016/j.actamat.2010.03.017
  • Coakley J, Dye D, Basoalto H. Creep and creep modelling of a multimodal nickel-base superalloy. Acta Mater. 2011;59(3):854–863. doi: 10.1016/j.actamat.2010.08.035
  • Svoboda J, Lukáš P. Model of creep in 001-oriented superalloy single crystals. Acta Mater. 1998;46(10):3421–3431. doi: 10.1016/S1359-6454(98)00043-3
  • Svoboda J, Lukáš P. Creep deformation modelling of superalloy single crystals. Acta Mater. 2000;48(10):2519–2528. doi: 10.1016/S1359-6454(00)00078-1
  • MacLachlan DW, Knowles DM. Creep-behavior modeling of the single-crystal superalloy CMSX-4. Metal Mater Trans A. 2000;31(5):1401–1411. doi: 10.1007/s11661-000-0258-0
  • MacLachlan DW, Wright LW, Gunturi S, et al. Constitutive modelling of anisotropic creep deformation in single crystal blade alloys SRR99 and CMSX-4. Int J Plasticity. 2001;17(4):441–467. doi: 10.1016/S0749-6419(00)00058-9
  • Manonukul A, Dunne F, Knowles D, et al. Multiaxial creep and cyclic plasticity in nickel-base superalloy C263. Int J Plasticity. 2005;21(1):1–20. doi: 10.1016/j.ijplas.2003.12.005
  • Prasad SC, Rao IJ, Rajagopal KR. A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater. 2005;53(3):669–679. doi: 10.1016/j.actamat.2004.10.020
  • Ma A, Dye D, Reed RC. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4. Acta Mater. 2008;56(8):1657–1670. doi: 10.1016/j.actamat.2007.11.031
  • Wu R, Zaiser M, Sandfeld S. A continuum approach to combined evolution and dislocation plasticity in nickel-based superalloys. Int J Plasticity. 2017;95:142–162. doi: 10.1016/j.ijplas.2017.04.005
  • Oruganti R, Karadge M, Nalawade S, et al. A new approach to modeling of creep in superalloys. In: Huron ES, Reed RC, Hardy MC, et al., editors. Superalloys 2012. John Wiley & Sons; 2012. p. 473–479.
  • McVetty PG. Creep of metals at elevated temperatures: the hyperbolic sine relation between stress and creep rate. AIME TRANS. 1943;65:761–769.
  • Friedel J. Dislocations. [1st english ed.] (International series of monographs on solid state physics; Vol. 3). Oxford and New York: Pergamon Press; 1964
  • Hirth JP, Lothe J. Theory of dislocations. 2nd ed. Malabar (FL): Krieger Pub. Co; 1992.
  • Nabarro F. Creep in commercially pure metals. Acta Mater. 2006;54(2):263–295. doi: 10.1016/j.actamat.2005.08.021
  • Lagneborg R. Dislocation mechanisms in creep. Int Metal Rev. 1972;17(1):130–146. doi: 10.1179/095066072790137620
  • Lagneborg R, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys. Metal Sci. 1976;10(1):20–28. doi: 10.1179/030634576790431462
  • Carry C, Strudel J. Apparent and effective creep parameters in single crystals of a nickel base superalloy – I incubation period. Acta Metallurgica. 1977;25(7):767–777. doi: 10.1016/0001-6160(77)90092-X
  • Carry C, Strudel J. Apparent and effective creep parameters in single crystals of a nickel base superalloy – II. secondary creep. Acta Metallurgica. 1978;26(5):859–870. doi: 10.1016/0001-6160(78)90035-4
  • Hafez Haghighat SM, Eggeler G, Raabe D. Effect of climb on dislocation mechanisms and creep rates in -strengthened Ni base superalloy single crystals: a discrete dislocation dynamics study. Acta Mater. 2013;61(10):3709–3723. doi: 10.1016/j.actamat.2013.03.003
  • Reed RC, Zhu Z, Sato A, et al. Isolation and testing of new single crystal superalloys using alloys-by-design method. Mater Sci Eng. 2016;667:261–278. doi: 10.1016/j.msea.2016.04.089
  • Reed RC, Mottura A, Crudden DJ. Alloys-by-design: towards optimization of compositions of nickel-based superalloys. In: Hardy MC, Huron ES, Glatzel U, et al., editors. Superalloys 2016. Hoboken (NJ): John Wiley & Sons, Inc; 2016. p. 13–23.
  • Nathal MV. Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys. Metal Trans A. 1987;18(11):1961–1970. doi: 10.1007/BF02647026
  • Fleischmann E, Miller MK, Affeldt E, et al. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys. Acta Mater. 2015;87:350–356. doi: 10.1016/j.actamat.2014.12.011
  • Caron P, Khan T. Improvement of creep strength in a nickel-base single-crystal superalloy by heat treatment. Mater Sci Eng. 1983;61(2):173–184. doi: 10.1016/0025-5416(83)90199-4
  • ur Rehman H, Durst K, Neumeier S, et al. On the temperature dependent strengthening of nickel by transition metal solutes. Acta Mater. 2017;137:54–63. doi: 10.1016/j.actamat.2017.05.038
  • Bayerlein U, Sockel HG. Measurements and calculations of the elastic moduli of ODS and cast Ni-based superalloys. Mater Sci Eng. 1991;141(2):179–187. doi: 10.1016/0921-5093(91)90768-I
  • Bayerlein U, Sockel HG. Determination of single crystal elastic constants from DS- and DR-Ni-based superalloys by a new regression method between 20C and 1200C. In: MacKay RA, Antolovich SD, Stusrud RW, et al., editors. Superalloys 1992. Warrendale, (PA): TMS; 1992. p. 695–704.
  • Siebörger D, Knake H, Glatzel U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases. Mater Sci Eng. 2001;298(1–2):26–33. doi: 10.1016/S0921-5093(00)01318-6
  • Morrell R, Ford DA, Harris K. Calculations of modulus in different directions for single-crystal alloys: NPL Report DEPC-MN 004. Teddington, UK: National Physical Laboratory and Division of Materials Applications; 2004.
  • Dye D, Coakley J, Vorontsov VA, et al. Elastic moduli and load partitioning in a single-crystal nickel superalloy. Scr Mater. 2009;61(2):109–112. doi: 10.1016/j.scriptamat.2009.03.008
  • Mughrabi H. Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys: some open problems. Mater Sci Technol. 2009;25(2):191–204. doi: 10.1179/174328408X361436
  • Mirkin IL, Kancheev OD. Relationship between heat resistance and difference in lattice spacings of phases in precipitation-hardening alloys. Metal Sci Heat Treatment. 1967;9(1):10–13. doi: 10.1007/BF00657546
  • Stoloff NS. Fundamentals of strengthening. In: Sims CT, Stoloff NS, Hagel WC, editors. Superalloys II. New York: Wiley; 1987. p. 61–96.
  • Rettig R, Ritter NC, Helmer HE, et al. Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation. Model Simul Mater Sci Eng. 2015;23(3):35004. doi: 10.1088/0965-0393/23/3/035004
  • Koizumi Y, Kobayashi T, Yokokawa T, et al. Development of next-generation Ni-base single crystal superalloys. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 35–43.
  • Nathal MV, MacKay RA, Garlick RG. Temperature dependence of γ-γ′ lattice mismatch in nickel-base superalloys. Mater Sci Eng. 1985;75(1–2):195–205. doi: 10.1016/0025-5416(85)90189-2
  • Zhang JX, Murakumo T, Harada H, et al. Creep deformation mechanisms in some modern single-crystal superalloys. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 189–195.
  • Gabb TP, Draper SL, Hull DR, et al. The role of interfacial dislocation networks in high temperature creep of superalloys. Mater Sci Eng. 1989;118:59–69. doi: 10.1016/0921-5093(89)90058-0
  • MacKay RA, Nathal MV. γ′ coarsening in high volume fraction nickel-base alloys. Acta Metallurgica et Mater. 1990;38(6):993–1005. doi: 10.1016/0956-7151(90)90171-C
  • Zhang JX, Murakumo T, Harada H, et al. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scr Mater. 2003;48(3):287–293. doi: 10.1016/S1359-6462(02)00379-2
  • Zhang JX, Murakumo T, Koizumi Y, et al. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy. Metallurgical Mater Trans A. 2002;33(12):3741–3746. doi: 10.1007/s11661-002-0246-7
  • Carroll LJ, Feng Q, Pollock TM. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys. Metallurgical Mater Trans A. 2008;39(6):1290–1307. doi: 10.1007/s11661-008-9520-7
  • Hino T, Kobayashi T, Harada H, et al. Development of a new single crystal superalloy for industrial gas turbines. In: Pollock TM, Green K, Kissinger R, editors. Superalloys 2000. Warrendale (PA): TMS; 2000. p. 729–736.
  • Harada H, Murakami H. Design of Ni-base superalloys. In: Zunger A, Osgood RM, Hull R, et al., editors. Computational materials design. (Springer series in materials science; Vol. 34). Berlin: Springer; 1999. p. 39–70.
  • Yokokawa T, Harada H, Kawagishi K, Quantitative analysis of creep strengthening factors in Ni-base single crystal superalloys. In: Huron ES, Reed RC, Hardy MC, et al., editors. Superalloys 2012. Hoboken, New Jersey: John Wiley & Sons; 2012. p. 285–292.
  • Sato A, Yokokawa T, Koizumi Y, et al. A factor analysis of creep rupture properties of Ni-base superalloys. J Japan Inst Metals. 2005;69(8):691–694. doi: 10.2320/jinstmet.69.691
  • Yokokawa T, Harada H, Mori Y, et al. Design of next generation Ni-base single crystal superalloys containing Ir: towards 1150 C temperature capability. In: Hardy MC, Huron ES, Glatzel U, et al.,, editors. Superalloys 2016. Hoboken (NJ): John Wiley & Sons, Inc; 2016. p. 123–130.
  • Caron P. High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. In: Pollock TM, Green K, Kissinger R, editors. Superalloys 2000. Warrendale (PA): TMS; 2000. p. 737–746.
  • Watanabe R, Kuno T. Alloy design of nickel-base precipitation hardened superalloys. Tetsu-to-Hagane. 1975;61(9):2274–2294. doi: 10.2355/tetsutohagane1955.61.9_2274
  • Mishima Y, Ochiai S, Suzuki T. Lattice parameters of Ni(γ), Ni3Al(γ′) and Ni3Ga(γ′) solid solutions with additions of transition and B-subgroup elements. Acta Metallurgica. 1985;33(6):1161–1169. doi: 10.1016/0001-6160(85)90211-1
  • Nash P. Phase diagrams of binary nickel alloys. Materials Park (OH): ASM International; 1991.
  • Kablov EN, Petrushin NV, Bronfin MB, et al. Specific features of rhenium-alloyed single-crystal nickel superalloys. Russian Metallurgy (Metally). 2006;2006(5):406–414. doi: 10.1134/S0036029506050089
  • Kamara AB, Ardell AJ, Wagner CNJ. Lattice misfits in four binary Ni-base alloys at ambient and elevated temperatures. Metallurgical Mater Trans A. 1996;27(10):2888–2896. doi: 10.1007/BF02663837
  • Sung P, Poirier D. Estimation of densities and coefficients of thermal expansion of solid Ni-base superalloys. Mater Sci Eng. 1998;245(1):135–141. doi: 10.1016/S0921-5093(97)00699-0
  • Karunaratne MSA, Kyaw S, Jones A, et al. Modelling the coefficient of thermal expansion in Ni-based superalloys and bond coatings. J Mater Sci. 2016;51(9):4213–4226. doi: 10.1007/s10853-015-9554-3
  • Pyczak F, Devrient B, Mughrabi H. The effects of different alloying elements on the thermal expansion coefficients, Lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 827–836.
  • Ram F, Li Z, Zaefferer S, et al. On the origin of creep dislocations in a Ni-base, single-crystal superalloy: An ECCI, EBSD, and dislocation dynamics-based study. Acta Mater. 2016;109:151–161. doi: 10.1016/j.actamat.2016.02.038
  • Frank FC, Read WT. Multiplication processes for slow moving dislocations. Phys Rev. 1950;79(4):722–723. doi: 10.1103/PhysRev.79.722
  • Koehler JS. The nature of work-hardening. Phys Rev. 1952;86(1):52–59. doi: 10.1103/PhysRev.86.52
  • D'Souza N, Newell M, Devendra K, et al. Formation of low angle boundaries in Ni-based superalloys. Mater Sci Engi. 2005;413–414:567–570. doi: 10.1016/j.msea.2005.08.188
  • Danas K, Deshpande VS. Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations. Model Simul Mater Sci Eng. 2013;21(4):045008. doi: 10.1088/0965-0393/21/4/045008
  • Liu B, Raabe D, Roters F, et al. Interfacial dislocation motion and interactions in single-crystal superalloys. Acta Mater. 2014;79:216–233. doi: 10.1016/j.actamat.2014.06.048
  • Takeuchi S, Argon AS. Steady-state creep of alloys due to viscous motion of dislocations. Acta Metallurgica. 1976;24(10):883–889. doi: 10.1016/0001-6160(76)90036-5
  • Hull D, Bacon DJ. Introduction to dislocations. 5th ed. Oxford: Butterworth-Heinemann; 2011.
  • Ghosh RN, Curtis RV, McLean M. Creep deformation of single crystal superalloys–modelling the crystallographic anisotropy. Acta Metallurgica et Mater. 1990;38(10):1977–1992. doi: 10.1016/0956-7151(90)90309-5
  • Kuhn HA, Biermann H, Ungár T, et al. An X-ray study of creep-deformation induced changes of the lattice mismatch in the -hardened monocrystalline nickel-base superalloy SRR 99. Acta Metallurgica et Mater. 1991;39(11):2783–2794. doi: 10.1016/0956-7151(91)90095-I
  • Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metallurgica et Mater. 1992;40(1):1–30. doi: 10.1016/0956-7151(92)90195-K
  • van Sluytman JS, Pollock TM. Optimal precipitate shapes in nickel-base γ– alloys. Acta Mater. 2012;60(4):1771–1783. doi: 10.1016/j.actamat.2011.12.008
  • Cottrell AH, Jaswon MA. Distribution of solute atoms round a slow dislocation. Proc R Soc A. 1949;199(1056):104–114. doi: 10.1098/rspa.1949.0128
  • Takeuchi S, Argon AS. Glide and climb resistance to the motion of an edge dislocation due to dragging a Cottrell atmosphere. Philos Mag A. 1979;40(1):65–75. doi: 10.1080/01418617908234833
  • Lapin J, Gebura M, Pelachova T, et al. Coarsening kinetics of cuboidal gamma prime precipitates in single crystal nickel base superalloy CMSX-4. Kovove Mater. 2008;46(6):313–322.
  • Karunaratne M, Carter P, Reed RC. Interdiffusion in the face-centred cubic phase of the Ni–Re, Ni–Ta and Ni–W systems between 900 and 1300 C. Mater Sci Engi. 2000;281(1–2):229–233. doi: 10.1016/S0921-5093(99)00705-4
  • Karunaratne M, Carter P, Reed RC. On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 C. Acta Mater. 2001;49(5):861–875. doi: 10.1016/S1359-6454(00)00390-6
  • Karunaratne M, Reed RC. Interdiffusion of the platinum-group metals in nickel at elevated temperatures. Acta Mater. 2003;51(10):2905–2919. doi: 10.1016/S1359-6454(03)00105-8
  • Karunaratne M, Reed RC. Interdiffusion of niobium and molybdenum in nickel between 900-1300°C. Defect Diffusion Forum. 2005;237-240:420–425.
  • Ustad T, Sørum H. Interdiffusion in the Fe–Ni, Ni–Co, and Fe–Co systems. Phys Status Solidi (a). 1973;20(1):285–294. doi: 10.1002/pssa.2210200129
  • Jung SB, Yamane T, Minamino Y, et al. Interdiffusion and its size effect in nickel solid solutions of Ni-Co, Ni-Cr and Ni-Ti systems. J Mater Sci Lett. 1992;11(20):1333–1337. doi: 10.1007/BF00729354
  • Campbell C, Boettinger W, Kattner U. Development of a diffusion mobility database for Ni-base superalloys. Acta Mater. 2002;50(4):775–792. doi: 10.1016/S1359-6454(01)00383-4
  • Liu XJ, Hu HH, Han JJ, et al. Assessment of the diffusional mobilities in fcc Ni–Nb and fcc Ni–Mo alloys. Calphad. 2012;38:140–145. doi: 10.1016/j.calphad.2012.05.003
  • Liu XJ, Lin JY, Lu Y, et al. Assessment of the atomic mobility for the fcc phase of Ni–Co–X (X=Re and Ru) system. Calphad. 2014;45:138–144. doi: 10.1016/j.calphad.2013.12.003
  • Zhu J, Holcomb GR, Jablonski PD, et al. Subsurface characterization of an oxidation-induced phase transformation and twinning in nickel-based superalloy exposed to oxy-combustion environments. Mater Sci Eng. 2012;550:243–253. doi: 10.1016/j.msea.2012.04.066
  • Ford DA, Arthey RP. Development of single crystal alloys for specific engine applications. In: Gell M, Kortovich CS, Bricknell RH, editors. Superalloys 1984. Warrendale (PA): TMS; 1984. p. 115–124.
  • Harris K, Erickson GL, Sikkenga SL, Development of the rhenium containing superalloys CMSX-4 & CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines. In: MacKay RA, Antolovich SD, Stusrud RW, et al., editors. Superalloys 1992. Warrendale (PA): TMS; 1992. p. 297–306.
  • Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 15–24.
  • Gilman JJ. Microdynamics of plastic flow at constant stress. J Appl Phys. 1965;36(9):2772–2777. doi: 10.1063/1.1714577
  • Reed RC, Matan N, Cox D, et al. Creep of CMSX-4 superalloy single crystals: effects of rafting at high temperature. Acta Mater. 1999;47(12):3367–3381. doi: 10.1016/S1359-6454(99)00217-7
  • Matan N, Cox DC, Carter P, et al. Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature. Acta Mater. 1999;47(5):1549–1563. doi: 10.1016/S1359-6454(99)00029-4
  • Preußner J, Rudnik Y, Brehm H, et al. A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals. Int J Plasticity. 2009;25(5):973–994. doi: 10.1016/j.ijplas.2008.04.006
  • Gibbon TB, HendersonBrown M. Dislocation densities in Ni-Cr-base alloys. Scripta Metallurgica. 1975;9(1):15–16. doi: 10.1016/0036-9748(75)90138-6
  • Lifshitz IM, Slyozov VV. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. 1961;19(1–2):35–50. doi: 10.1016/0022-3697(61)90054-3
  • Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald–Reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie. 1961;65(7–8):581–591.
  • Baldan A. Review Progress in Ostwald ripening theories and their applications to the -precipitates in nickel-base superalloys: part II nickel-base superalloys. J Mater Sci. 2002;37(12):2379–2405. doi: 10.1023/A:1015408116016
  • Baldan A. Review progress in Ostwald ripening theories and their applications to nickel-base superalloys: part I: Ostwald ripening theories. J Mater Sci. 2002;37(11):2171–2202. doi: 10.1023/A:1015388912729
  • McLean D. Predicting growth of γ′ in nickel alloys. Metal Sci. 1984;18(5):249–256. doi: 10.1179/030634584790420113
  • Ardell AJ. An application of the theory of particle coarsening: the precipitate in Ni-Al alloys. Acta Metallurgica. 1968;16(4):511–516. doi: 10.1016/0001-6160(68)90125-9
  • Ardell A. The effect of volume fraction on particle coarsening: theoretical considerations. Acta Metallurgica. 1972;20(1):61–71. doi: 10.1016/0001-6160(72)90114-9
  • Chellman D, Ardell A. The coarsening of γ′ precipitates at large volume fractions. Acta Metallurgica. 1974;22(5):577–588. doi: 10.1016/0001-6160(74)90155-2
  • Davies C, Nash P, Stevens RN. The effect of volume fraction of precipitate on Ostwald ripening. Acta Metallurgica. 1980;28(2):179–189. doi: 10.1016/0001-6160(80)90067-X
  • Brailsford A, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metallurgica. 1979;27(3):489–497. doi: 10.1016/0001-6160(79)90041-5
  • Li X, Saunders N, Miodownik AP. The coarsening kinetics of particles in nickel-based alloys. Metallurgical Mater Trans A. 2002;33(11):3367–3373. doi: 10.1007/s11661-002-0325-9
  • Ai C, Zhao X, Zhou J, et al. Application of a modified Ostwald ripening theory in coarsening of phases in Ni based single crystal superalloys. J Alloys Compd. 2015;632:558–562. doi: 10.1016/j.jallcom.2015.01.215
  • Ges AM, Fornaro O, Palacio HA. Coarsening behaviour of a Ni-base superalloy under different heat treatment conditions. Mater Sci Eng. 2007;458(1–2):96–100. doi: 10.1016/j.msea.2006.12.107
  • Acharya M, Fuchs G. The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater Sci Eng. 2004;381(1–2):143–153. doi: 10.1016/j.msea.2004.04.001
  • Yoon KE, Noebe RD, Seidman DN. Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. I: experimental observations. Acta Mater. 2007;55(4):1145–1157. doi: 10.1016/j.actamat.2006.08.027
  • Yoon KE, Noebe RD, Seidman DN. Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy. II: analysis of the coarsening behavior. Acta Mater. 2007;55(4):1159–1169. doi: 10.1016/j.actamat.2006.08.024
  • Matan N, Cox DC, Rae C, et al. On the kinetics of rafting in CMSX-4 superalloy single crystals. Acta Mater. 1999;47(7):2031–2045. doi: 10.1016/S1359-6454(99)00093-2
  • Ashby MF, Abel CA, Goulette MJ. Materials selection to resist creep [and discussion]. Philos Trans R Soc A. 1995;351(1697):451–468.
  • Kocks UF, Argon AS, Ashby MF. Thermodynamics and kinetics of slip. (Progress in materials science; Vol. 19). S.l.: Pergamon Press, Oxford, UK; 1970.
  • Argon AS. Internal stresses arising from the interaction of mobile dislocations. Scripta Metallurgica. 1970;4(12):1001–1004. doi: 10.1016/0036-9748(70)90048-7
  • Murakumo T, Koizumi Y, Kobayashi K, et al. Creep strength of Ni-base single-crystal superalloys on the tie-line. In: Green K, Harada H, Pollock TM, editors. Superalloys 2004. Warrendale (PA): TMS; 2004. p. 155–162.
  • Murakumo T, Kobayashi T, Koizumi Y, et al. Creep behaviour of Ni-base single-crystal superalloys with various volume fraction. Acta Mater. 2004;52(12):3737–3744. doi: 10.1016/j.actamat.2004.04.028
  • Maier HJ, Niendorf T, Bürgel R. Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen. 5th ed. Wiesbaden: Springer Vieweg; 2015.
  • MacKay RA, Gabb TP, Smialek JL, et al. A new approach of designing superalloys for low density. JOM. 2010;62(1):48–54. doi: 10.1007/s11837-010-0011-0
  • MacKay RA, Gabb TP, Garg A, et al. Influence of composition on microstructural parameters of single crystal nickel-base superalloys. Mater Charact. 2012;70:83–100. doi: 10.1016/j.matchar.2012.05.001
  • MacKay RA, Gabb TP, Nathal MV. Microstructure-sensitive creep models for nickel-base superalloy single crystals. Mater Sci Eng. 2013;582:397–408. doi: 10.1016/j.msea.2013.04.072
  • Roth HA, Davis CL, Thomson RC. Modeling solid solution strengthening in nickel alloys. Metallurgical Mater Trans A. 1997;28(6):1329–1335. doi: 10.1007/s11661-997-0268-2
  • Crudden DJ, Mottura A, Warnken N, et al. Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater. 2014;75:356–370. doi: 10.1016/j.actamat.2014.04.075
  • Shah DM, Cetel A. Evaluation of PWA1483 for large single crystal IGT blade applications. In: Pollock TM, Green K, Kissinger R, editors. Superalloys 2000. Warrendale (PA): TMS; 2000. p. 295–304.
  • Morinaga M, Yukawa N, Adachi H, New Phacomp and its applications to alloy design. In: Gell M, Kortovich CS, Bricknell RH, editors. Superalloys 1984. Warrendale (PA): TMS; 1984. p. 523–532.
  • Matsugi K, Murata Y, Morinaga M, Realistic advancement for nickel-based single crystal superalloys by the d-electrons concept. In: MacKay RA, Antolovich SD, Stusrud RW, et al., editors. Superalloys 1992. Warrendale (PA): TMS; 1992. p. 307–316.
  • Seiser B, Drautz R, Pettifor DG. TCP phase predictions in Ni-based superalloys: structure maps revisited. Acta Mater. 2011;59(2):749–763. doi: 10.1016/j.actamat.2010.10.013