273
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effect of concentration on the structure of isothermally-annealed CuZr metallic glasses

, , , , &
Pages 2287-2293 | Received 15 Jul 2018, Accepted 21 Sep 2018, Published online: 14 Oct 2018

References

  • Lu ZP, Liu CT. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 2002;50(13):3501–3512. doi: 10.1016/S1359-6454(02)00166-0
  • Yang WM, Li JW, Liu HS, et al. Origin of abnormal glass transition behavior in metallic glasses. Intermetallics. 2014;49:52–56. doi: 10.1016/j.intermet.2014.01.010
  • Chen DZ, Shi CY, An Q, et al. Fractal atomic-level percolation in metallic glasses. Science. 2015;349(6254):1306–1310. doi: 10.1126/science.aab1233
  • Fan C, Liaw PK, Wilson TW, et al. Structural model for bulk amorphous alloys. Appl Phys Lett. 2006;89(11):111905. doi: 10.1063/1.2345276
  • Jónsson H, Andersen HC. Icosahedral ordering in the Lennard-Jones liquid and glass. Phys Rev Lett. 1988;60(22):2295–2298. doi: 10.1103/PhysRevLett.60.2295
  • Miracle DB, Egami T, Flores KM, et al. Structural aspects of metallic glasses. MRS Bull. 2007;32(8):629–634. doi: 10.1557/mrs2007.124
  • Cheng YQ, Ma E. Indicators of internal structural states for metallic glasses: local order, free volume, and configurational potential energy. Appl Phys Lett. 2008;93(5):611. doi: 10.1063/1.2966154
  • Hui X, Fang HZ, Chen GL, et al. Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Mater. 2009;57(2):376–391. doi: 10.1016/j.actamat.2008.09.022
  • Foroughi A, Tavakoli R, Aashuri H. Medium range order evolution in pressurized sub-Tg annealing of Cu64Zr36 metallic glass. J Non-Cryst Solids. 2018;481:132–137. doi: 10.1016/j.jnoncrysol.2017.10.034
  • Cheng YQ, Sheng HW, Ma E. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B. 2008;78(1):1436–1446. doi: 10.1103/PhysRevB.78.014207
  • Xu Y, Yu M, Xu R, et al. Short-to-medium-range order and atomic packing in Zr48Cu36Ag8Al8 bulk metallic glass. Metals (Basel). 2016;6(10):240. doi: 10.3390/met6100240
  • Lee M, Lee CM, Lee KR, et al. Networked interpenetrating connections of icosahedra: effects on shear transformations in metallic glass. Acta Mater. 2011;59(1):159–170. doi: 10.1016/j.actamat.2010.09.020
  • Soklaski R, Nussinov Z, Markow Z, et al. Connectivity of the Icosahedral Network and a dramatically growing static length scale in Cu-Zr binary metallic glasses. Phys Rev B. 2013;87(18):184203. doi: 10.1103/PhysRevB.87.184203
  • Zemp J, Celino M, Schönfeld B, et al. Icosahedral superclusters in Cu64Zr36 metallic glass. Phys Rev B. 2014;90(14):144108. doi: 10.1103/PhysRevB.90.144108
  • Frank FC. Supercooling of liquids. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences. 1952;215(1120):43–46. doi: 10.1098/rspa.1952.0194
  • Dang Y, Wang L, Fan Q. Relation of structure, composition and glass forming ability in Zr-Cu binary amorphous alloys, MATEC Web of Conferences; 2016: EDP Sciences.
  • Sha ZD, Feng YP, Li Y. Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu-Zr metallic glasses. Appl Phys Lett. 2010;96(6):061903. doi: 10.1063/1.3310278
  • Ding J, Cheng YQ, Ma E. Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater. 2014;69:343–354. doi: 10.1016/j.actamat.2014.02.005
  • Zemp J, Celino M, Schönfeld B, et al. Crystal-like rearrangements of icosahedra in simulated copper-zirconium metallic glasses and their effect on mechanical properties. Phys Rev Lett. 2015;115(16):165501. doi: 10.1103/PhysRevLett.115.165501
  • Ryltsev RE, Klumov BA, Chtchelkatchev NM. Cooling rate dependence of simulated Cu64.5Zr35.5 metallic glass structure. J Chem Phys. 2016;145(3):034506. doi: 10.1063/1.4958631
  • Wang YY, Yu P, Zhang T, et al. Microstructural evolution and densification of Fe80P11C9 metallic glass under high pressure. Mater Sci Tech-Lond. 2014;30(14):1774–1777. doi: 10.1179/1743284713Y.0000000476
  • Tahiri M, Hasnaoui A, Sbiaai K. Atomic scale investigation of structural properties and glass forming ability of Ti100−xAlx metallic glasses. Metall Mater Trans A. 2018;49(6):2513–2522. doi: 10.1007/s11661-018-4541-3
  • Lu BF, Kong LT, Laws KJ, et al. EXAFS and molecular dynamics simulation studies of Cu-Zr metallic glass: short-to-medium range order and glass forming ability. Mater Charact. 2018;141:41–48. doi: 10.1016/j.matchar.2018.04.036
  • Cheng Y, Ma E, Sheng H. Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett. 2009;102(24):245501. doi: 10.1103/PhysRevLett.102.245501
  • Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19. doi: 10.1006/jcph.1995.1039
  • Qi L, Zhang HF, Hu ZQ. Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM. Intermetallics. 2004;12(10–11):1191–1195. doi: 10.1016/j.intermet.2004.04.003
  • Inoue A, Zhang W, Zhang T, et al. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Mater. 2001;49(14):2645–2652. doi: 10.1016/S1359-6454(01)00181-1
  • Duan G, Xu D, Zhang Q, et al. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: glass formation and atomic-level structure. Phys Rev B. 2005;71(22):224208. doi: 10.1103/PhysRevB.71.224208
  • Mo YF, Tian ZA, Liu RS, et al. Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts. J Alloy Compd. 2016;688:654–665. doi: 10.1016/j.jallcom.2016.07.221
  • Finney JL. Random packings and the structure of simple liquids. I. The geometry of random close packing, proceedings of the royal society of London. Series A. Math Phys Sci. 1970;319(1539):495–507. doi: 10.1098/rspa.1970.0190
  • Pan SP, Qin JY, Gu TK, et al. Correlation between local structure of melts and glass forming ability for Fe78M9B13 (M=Nb. Si, and Zr) Alloys. J Appl Phys. 2009;105(1):691. doi: 10.1063/1.3041473
  • Wang CC, Wong CH. Structural properties of ZrxCu90-xAl10 metallic glasses investigated by molecular dynamics simulations. J Alloy Compd. 2012;510(1):107–113. doi: 10.1016/j.jallcom.2011.07.110
  • Li M, Wang CZ, Hao SG, et al. Structural heterogeneity and medium-range order in ZrxCu100-x metallic glasses. Phys Rev B. 2009;80(18):184201. doi: 10.1103/PhysRevB.80.184201
  • Sha Z, Xu B, Shen L, et al. The basic polyhedral clusters, the optimum glass formers, and the composition-structure-property (glass-forming ability) correlation in Cu–Zr metallic glasses. J Appl Phys. 2010;107(6):063508. doi: 10.1063/1.3359683
  • Peng HL, Li MZ, Wang WH, et al. Effect of local structures and atomic packing on glass forming ability in CuxZr100-x metalic glasses. Appl Phys Lett. 2010;96(2):021901. doi: 10.1063/1.3282800
  • Bailey NP, Jakob S, Jacobsen KW. Simulation of Cu-Mg metallic glasses: thermodynamics and structure. Phys Rev B. 2003;69(14):1124–1133.
  • Inoue A, Masumoto T, Chen HS. Enthalpy relaxation behavior of metal-metal (Zr-Cu) amorphous alloys upon annealing. J Mater Sci. 1985;20(11):4057–4068. doi: 10.1007/BF00552399
  • Mizuno A, Matsumura S, Watanabe M, et al. High-energy X-ray diffraction study of liquid structure of metallic glass-forming Zr70Cu30 alloy. Mater Trans. 2005;46(12):2799–2802. doi: 10.2320/matertrans.46.2799

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.