208
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of Au additions on the structure and properties of (Fe0.5Co0.5)71Nb4Si5B20 bulk metallic glass

, , , &
Pages 376-382 | Received 12 Sep 2018, Accepted 28 Dec 2018, Published online: 11 Jan 2019

References

  • Inoue A, Takeuchi A. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater Sci Eng A. 2004;16:375–377.
  • Suryanarayana C, Inoue A. Bulk metallic glasses: Taylor and Francis Group, LLC; 2011.
  • Chen M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011;3:82–90. doi: 10.1038/asiamat.2011.30
  • Inoue A, Kong FL, Man QK, et al. Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. J. Alloys Compd. 2014;615(Supplement 1):S2–S8. doi: 10.1016/j.jallcom.2013.11.122
  • Inoue A. Bulk glassy alloys: historical development and current research. Engineering. 2015;1:185–191. doi: 10.15302/J-ENG-2015038
  • Wang WH. Roles of minor additions in formation and properties of bulk metallic glasses. Prog Mater Sci. 2007;52:540–596. doi: 10.1016/j.pmatsci.2006.07.003
  • Takeuchi A, Inoue A. Mixing enthalpy of liquid phase calculated by Miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics. 2010;18:1779–1789. doi: 10.1016/j.intermet.2010.06.003
  • Li R, Stoica M, Eckert J. Effect of minor Cu addition on phase evolution and magnetic properties of [{(Fe0.5Co0.5)0.75Si0.05B0.20}0.96Nb0.04]100-xCux alloys. The 13th International Conference on Rapidly Quenched and Metastable Materials, vol. 012042. Journal of Physics: Conference Series 144: IOP Publishing, 2009.
  • Aykol M, Akdeniz MV, Mekhrabov AO. Solidification behavior, glass forming ability and thermal characteristics of soft magnetic Fe-Co-B-Si-Nb-Cu bulk amorphous alloys. Intermetallics. 2011;19:1330–1337. doi: 10.1016/j.intermet.2011.05.004
  • Zhao C, Dun C, Man Q, et al. Enhancement of plastic deformation in FeCoNbB bulk metallic glass with superhigh strength. Intermetallics. 2013;32:408–412. doi: 10.1016/j.intermet.2012.09.018
  • McHenry ME. Amorphous and nanocrystalline high temperature magnetic materials for PWR. Final Report, Project No: 3145. Pittsburgh, USA: Carnegie Mellon University; 2006. p. 68.
  • Jilani S, Khalid FA. Role of copper addition on properties of bulk metallic glass materials. Mater Sci Eng A. 2016;663:17–20. doi: 10.1016/j.msea.2016.03.109
  • Ikram H, Ahmad Khalid F, Akmal M, et al. Effect of copper and zirconium addition on properties of Fe-Co-Si-B-Nb bulk metallic glasses. J Mater Eng Perform. 2017;26:3144–3150. doi: 10.1007/s11665-017-2753-0
  • Inoue A, Shen BL, Chang CT. Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 2004;52:4093–4099. doi: 10.1016/j.actamat.2004.05.022
  • Rahman A, Luo Q, Lu Y, et al. Recurring effects of Cu addition on magnetic properties in Fe-based bulk metallic glasses. J Non-Cryst Solid. 2015;422:1–5. doi: 10.1016/j.jnoncrysol.2015.04.041
  • Jung HY, Yi S. Effect of Cu addition on nanocrystallization behaviors and magnetic properties of the Fe76.5-xC6.0Si3.3B5.5P8.7Cux (x=0 - 3 at.%) bulk metallic glass. J Alloys Compd. 2013;561:76–81. doi: 10.1016/j.jallcom.2013.01.165
  • Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater T JIM. 2005;46:2817–2829. doi: 10.2320/matertrans.46.2817
  • Madsen IC, Scarlett NVY, Kern A. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z Kristallogr. 2011;226:944–955. doi: 10.1524/zkri.2011.1437
  • Ahvenainen P, Kontro I, Svedstrom K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose. 2016;23:1073–1086. doi: 10.1007/s10570-016-0881-6
  • Pradeep KG, Herzer G, Raabe D. Atomic scale study of Cu clustering and pseudo-homogeneous Fe–Si nanocrystallization in soft magnetic FeSiNbB(Cu) alloys. Ultramicroscopy. 2015;159:285–291. doi: 10.1016/j.ultramic.2015.04.006
  • Gheiratmand T, Madaah-Hosseini HR. Finemet nanocrystalline soft magnetic alloy: investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements. J Magn Magn Mater. 2016;408:177–192. doi: 10.1016/j.jmmm.2016.02.057
  • Torrens-Serra J, Roth S, Rodriguez-Viejo J, et al. Effect of Nb in the nanocrystallization and magnetic properties of FeNbBCu amorphous alloys. J Non-Cryst Solid. 2008;354:5110–5112. doi: 10.1016/j.jnoncrysol.2008.05.057
  • Zameer Abbas S, Ahmad Khalid F, Zaigham H. Indentation and deformation behavior of FeCo-based bulk metallic glass alloys. Mater Sci Eng A. 2016;654:426–435. doi: 10.1016/j.msea.2015.12.048
  • Wang D, Yang S, Yang M, et al. Experimental investigation of phase equilibria in the Fe–Nb–Si ternary system. J Alloy Compd. 2014;605:183–192. doi: 10.1016/j.jallcom.2014.03.167
  • Lesz S, Kwapulinski P, Nabiałek M, et al. Thermal stability, crystallization and magnetic properties of Fe-Co-based metallic glasses. J Therm Anal Calorim. 2016;125:1143–1149. doi: 10.1007/s10973-016-5430-x
  • Fornell J, Gonzalez S, Rossinyol E, et al. Enhanced mechanical properties due to structural changes induced by devitrification in Fe–Co–B–Si–Nb bulk metallic glass. Acta Mater. 2010;58:6256–6266. doi: 10.1016/j.actamat.2010.07.047
  • Zameer Abbas S, Ahmad Khalid F, Zaigham H. Indentation fracture toughness behavior of FeCo based bulk metallic glass composites. J Non-Cryst Solids. 2017;457:86–92. doi: 10.1016/j.jnoncrysol.2016.11.022
  • Trexler MM, Thadhani NN. Mechanical properties of bulk metallic glasses. Prog Mater Sci. 2010;55:759. doi: 10.1016/j.pmatsci.2010.04.002
  • Padilha AF, Machado IF, Plaut RL. Microstructures and mechanical properties of Fe–15% Cr–15% Ni austenitic stainless steels containing different levels of niobium additions submitted to various processing stages. J Mater Process Technol. 2005;170:89–96. doi: 10.1016/j.jmatprotec.2005.05.002
  • Donnadieu P, Pohlmann C, Scudino S, et al. Deformation at ambient and high temperature of in situ Laves phases-ferrite composites. Sci Technol Adv Mater. 2014;15:034801. doi: 10.1088/1468-6996/15/3/034801
  • Neilson HJ, Carter JLW, Lewandowski JJ. An improved method for calculation of elastic constants of metallic glasses. Mater Sci Eng A. 2015;634:183–187. doi: 10.1016/j.msea.2015.03.025
  • Guo SF, Qiu JL, Yu P, et al. Fe-based bulk metallic glasses: brittle or ductile? Appl Phys Lett. 2014;105.
  • Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci. 2012;57:487–656. doi: 10.1016/j.pmatsci.2011.07.001
  • Ponton CB, Rawlings RD. Vickers indentation fracture toughness test Part 1: Review of literature and formulation of standardized indentation toughness equations. Mater Sci Technol. 1989;5:865–872. doi: 10.1179/mst.1989.5.9.865
  • Xu T, Li R, Xiao R, et al. Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-basedbulkmetallicglasses. Mater Sci Eng A. 2015;626:16–26. doi: 10.1016/j.msea.2014.12.048
  • Keryvin V, Hoang VH, Shen J. Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics. 2009;17:211–217. doi: 10.1016/j.intermet.2008.08.017
  • Anstis GR, Chantikul P, Lawn BR, et al. A critical Evaluation of indentation Techniques for measuring fracture toughness: I – direct crack measurements. J Am Ceram Soc. 1981;64:533–538. doi: 10.1111/j.1151-2916.1981.tb10320.x
  • Nastic A, Merati A, Bielawski M, et al. Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. J Mater Sci Technol. 2015;31:773–783. doi: 10.1016/j.jmst.2015.06.005
  • Niihara K, Morena K, Hasselman DPH. Evaluation of K1C of brittle solids by the indentation method with low crack-to-indent ratios. J Mater Sci Lett. 1982;1:13. doi: 10.1007/BF00724706
  • Madge SV, Louzguine-Luzgin DV, Lewandowski JJ, et al. Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mater. 2012;60:4800–4809. doi: 10.1016/j.actamat.2012.05.025
  • Lewandowski JJ, Wang WH, Greer AL. Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Let. 2005;85:77–87. doi: 10.1080/09500830500080474
  • Lewandowski JJ, Shazly M, Nouri AS. Intrinsic and extrinsic toughening of metallic glasses. Scripta Mater. 2006;54:337–341. doi: 10.1016/j.scriptamat.2005.10.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.