232
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Effect of strain on cavity development during Al–Zn–Mg–Cu alloy superplastic flow

, , ORCID Icon, , &
Pages 939-945 | Received 18 Dec 2018, Accepted 16 Mar 2019, Published online: 03 Apr 2019

References

  • Chen Y, Ding H, Cai Z, et al. Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy. Mat Sci Eng A. 2016;650:396–403. doi: 10.1016/j.msea.2015.10.083
  • Jin H, Amirkhiz BS, Lloyd DJ. Improvement of superplasticity in high-Mg aluminum alloys by sacrifice of some room temperature formability. Metall Mater Trans A. 2018;49:1962–1979. doi: 10.1007/s11661-018-4546-y
  • Yakovtseva OA, Mikhailovskaya AV, Kotov AD, et al. Effect of alloying on superplasticity of two-phase brasses. Phys Metals Metall. 2016;117:742–748. doi: 10.1134/S0031918X16070188
  • Cheng L, Li J, Xue X, et al. Effect of β/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys. J Alloy Compd. 2017;693:749–759. doi: 10.1016/j.jallcom.2016.09.170
  • Md FK, Panigrahi SK. Achieving excellent superplasticity in an ultrafine-grained QE22 alloy at both high strain rate and low-temperature regimes. J Alloy Compd. 2018;747:71–82. doi: 10.1016/j.jallcom.2018.02.294
  • Pilling J, Ridley N. Effect of hydrostatic pressure on cavitation in superplastic aluminium alloys. Acta Metal. 1986;34:669–679. doi: 10.1016/0001-6160(86)90182-3
  • Bae DH, Ghosh AK. Cavity growth during superplastic flow in an Al–Mg alloy: I. Experimental study. Acta Mater. 2002;50:993–1009. doi: 10.1016/S1359-6454(01)00399-8
  • Pilling J. Superplasticity in crystalline solids. Nottingham, UK: The Institute of Metals; 1989. p. 175–178.
  • Hirth JP, Nix WD. Analysis of cavity nucleation in solids subjected to external and internal stresses. Acta Met. 1985;33:359–368. doi: 10.1016/0001-6160(85)90078-1
  • Raj R. Nucleation of cavities at second phase particles in grain boundaries. Acta Met. 1978;26:995–1006. doi: 10.1016/0001-6160(78)90050-0
  • Smith E, Barnby JT. Nucleation of grain-boundary cavities during high-temperature creep. Met Sci J. 1967;1:1–4. doi: 10.1179/msc.1967.1.1.1
  • Chokshit AH, Mukherjee AK. An analysis of cavity nucleation in superplasticity. Acta Met. 1989;37:3007–3017. doi: 10.1016/0001-6160(89)90337-4
  • Ridley N, Bate PS, Zhang B. Effect of strain rate path on cavitation in superplastic aluminium alloy. Mat Sci Eng A. 2007;463:224–230. doi: 10.1016/j.msea.2006.07.154
  • Iwasaki H, Mabuchi M, Higashi K. Cavitation and fracture in high strain rate superplastic Al alloy/Si3N4(p) composites. Met Sci J. 2013;12:505–512.
  • Horng Y. Influence of deformation variables on cavitation of a superplastic 5083 aluminum alloy. Adv Manuf Process. 2000;15:231–245. doi: 10.1080/10426910008912985
  • Chan KC, Chow KK. The stress state dependence of cavitation in commercial superplastic Al5083 alloy. Mater Lett. 2002;56:38–42. doi: 10.1016/S0167-577X(02)00413-5
  • Yang W, Ding H, Mu Y, et al. Achieving high strength and ductility in double-sided friction stir processing 7050-T7451 aluminum alloy. Mat Sci Eng A. 2017;707:193–198. doi: 10.1016/j.msea.2017.09.028
  • Barnes AJ, Raman H, Lowerson A, et al. Recent application of superformed 5083 aluminum alloy in the aerospace industry. Mater Sci Forum. 2013;735:361–371. doi: 10.4028/www.scientific.net/MSF.735.361
  • Pugno N, Ciavarella M, Cornetti P, et al. A generalized Paris’ law for fatigue crack growth. J Mech Phys Solids. 2006;54:1333–1349. doi: 10.1016/j.jmps.2006.01.007
  • Geçkinli AE. Grain boundary sliding model for superplastic deformation. Metal Sci. 1983;17:12–18. doi: 10.1179/030634583790427504
  • Arieli A, Mukherjee AK. A model for the rate-controlling mechanism in superplasticity. Mat Sci Eng A. 1980;45:61–70. doi: 10.1016/0025-5416(80)90070-1
  • Ma ZY, Mishra RS, Mahoney MW. Superplastic deformation behaviour of friction stir processed 7075Al alloy. Acta Mater. 2002;50:4419–4430. doi: 10.1016/S1359-6454(02)00278-1
  • Ma ZY, Mishra RS. Cavitation in superplastic 7075Al alloys prepared via friction stir processing. Acta Mater. 2003;51:3551–3569. doi: 10.1016/S1359-6454(03)00173-3
  • Xinggang J, Jianzhong C, Longxiang M. The influence of the rolling direction on the mechanical behavior and cavity formation during superplastic deformation of 7075 A1 alloy. Acta Metal. 1993;41:2721–2727. doi: 10.1016/0956-7151(93)90141-E
  • Lhuissier P, Scheel M, Salvo L, et al. Continuous characterization by X-ray microtomography of damage during high-temperature deformation of magnesium alloy. Scripta Mater. 2013;69:85–88. doi: 10.1016/j.scriptamat.2013.03.001
  • Luo T, Ni DR, Xue P, et al. Low-temperature superplasticity of nugget zone of friction stir welded Al-Mg alloy joint. Mat Sci Eng A. 2018;727:177–183. doi: 10.1016/j.msea.2018.05.003
  • Su JQ, Nelson TW, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 2003;51:713–729. doi: 10.1016/S1359-6454(02)00449-4
  • Xinggang J, Jianzhong C, Longxiang M. A study of cavity nucleation during superplastic deformation of high strength aluminium alloy 7475. Mat Sci Eng A. 1992;157:37–41. doi: 10.1016/0921-5093(92)90096-J
  • Boissiere R, Blandin JJ, Salvo L. Damage development during superplasticity of Light alloys. J Eng Mater Technol. 2008;130(2):6. doi: 10.1115/1.2884335
  • Ravindran R, Manonmani K, Narayanasamy R. Effect of mechanical properties of annealed Al 5005 sheets on void formation and growth during metal forming. Mater Sci Tech-Lond. 2010;26:925–934. doi: 10.1179/174328409X459293
  • Kashyap BP. Correlation between flow strengthening and cavitation in superplastic Al-Cu eutectic alloy. Mater Sci Tech-Lond. 2003;19:36–42. doi: 10.1179/026708303225006024
  • Galindo-Nava EI, Torres-Villasenor G, Rivera-Diaz-del-Castillo PEJ. Engineering grain boundary sliding and cavitation effects in superplastic alloys employing thermodynamics. Mater Sci Tech-Lond. 2015;31:677–687. doi: 10.1179/1743284714Y.0000000643
  • Chen CL, Tan MJ. Cavity growth and filament formation of superplastically deformed Al 7475 alloy. Mater Sci Eng A Struct Mater Prop Microstruct Process. 2001;298:235–244. doi: 10.1016/S0928-4931(00)00193-4
  • Nicolaou PD, Semiatin SL. An experimental and theoretical investigation of the influence of stress state on cavitation during hot working. Acta Mater. 2003;51:613–623. doi: 10.1016/S1359-6454(02)00441-X
  • Livesey DW, Ridley N. Effect of grain size on cavitation in superplastic Zn-Al eutectoid. J Mater Sci. 1982;17:2257–2266. doi: 10.1007/BF00543735
  • Bridgman PW. Studies in large plastic flow and fracture. New York: McGraw-Hill; 1952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.