1,496
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Powder bed fusion additive layer manufacturing of titanium alloys

Pages 875-890 | Received 12 Jan 2019, Accepted 29 Mar 2019, Published online: 15 Apr 2019

References

  • Murr LE, Gaytan SM, Ramirez DA, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Mater Sci Tech. 2012;28:1–14.
  • Galindo-Fernández M, Mumtaz K, Rivera-Díaz-del Castillo P, et al. A microstructure sensitive model for deformation of TI–6AL–4V describing cast-and-wrought and additive manufacturing morphologies. Mater Des. 2018;160:350–362.
  • Powder metallurgy methods and applications. ASM handbook. Vol. 7: Powder metallurgy; 2015.
  • Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit Manuf. 2018;19:1–20.
  • Murr L. Metallurgy of additive manufacturing: Examples from electron beam melting. Addit Manuf. 2015;5:40–53.
  • DebRoy T, Wei H, Zuback J, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci. 2018;92:112–224.
  • Tan JH, Wong WLE, Dalgarno KW. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf. 2017;18:228–255.
  • Gu DD, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev. 2012;57(3):133–164.
  • Ali H, Ma L, Ghadbeigi H, et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Mater Sci Eng A. 2017;695:211–220.
  • Körner C. Additive manufacturing of metallic components by selective electron beam melting – a review. Int Mater Rev. 2016;61(5):361–377.
  • Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: materials and applications. Appl Phys Rev. 2015;2(4):041101.
  • Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661–671.
  • Rack H, Qazi J. Titanium alloys for biomedical applications. Mater Sci Eng C. 2006;26(8):1269–1277.
  • Wang M, Lin X, Huang W. Laser additive manufacture of titanium alloys. Mater Technol. 2016;31(2):1–8.
  • Kruth J, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J. 2005;11(1):26–36.
  • Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203.
  • Zhang L, Klemm D, Eckert J, et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65(1):21–24.
  • Liu Y, Wang H, Li S, et al. Compressive and fatigue behavior of beta-type titanium porous structures fabricated by electron beam melting. Acta Mater. 2017;126:58–66.
  • Li GC, Li J, Tian XJ, et al. Microstructure and properties of a novel titanium alloy Ti–6Al–2V–1.5Mo–0.5Zr–0.3Si manufactured by laser additive manufacturing. Mater Sci Eng A. 2017;684:233–238.
  • Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing. Nat Commun. 2018;9(1):3426.
  • Frazier WE. Metal additive manufacturing: a review. J Mater Eng Perform. 2014;23(6):1917–1928.
  • Ter Haar GM, Becker T, Blaine DC. Influence of heat treatments on the microstructure and tensile behavior of selective laser melting-produced Ti–6Al–4V parts. S Afr J Ind Eng. 2016;27(3):174–183.
  • Antonysamy A, Meyer J, Prangnell P. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Mater Charact. 2013;84:153–168.
  • Zhu Y, Tian X, Li J, et al. The anisotropy of laser melting deposition additive manufacturing of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy. Mater Des. 2015;67:538–542.
  • Sun P, Fang ZZ, Zhang Y, et al. Review of the methods for production of spherical Ti and Ti alloy powder. JOM. 2017;69(10):1853–1860.
  • Kaplan AFH, Powell J. Spatter in laser welding. J Laser Appl. 2011;23(3):032005.
  • Tang HP, Qian M, Liu N, et al. Effect of powder reuse times on additive manufacturing of Ti–6Al–4V by selective electron beam melting. JOM. 2015;67(3):555–563.
  • Dawes J, Bowerman R, Trepleton R. Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technol Rev. 2015;59(3):243–256.
  • Wei M, Chen S, Liang J, et al. Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum. 2017;143:185–194.
  • Peter W, Committee AIH. ASM handbook: Volume 7: Powder metal technologies and applications. United states: ASM; 1998.
  • Gerling R, Clemens H, Schimansky F. Powder metallurgical processing of intermetallic gamma titanium aluminides. Adv Eng Mater. 2004;6(12):23–38.
  • Sun P, Fang ZZ, Xia Y, et al. A novel method for production of spherical Ti–6Al–4V powder for additive manufacturing. Powder Technol. 2016;301:331–335.
  • Doblin C, Freeman D, Richards M. The TiROTM process for the continuous direct production of titanium powder. Key Eng Mater. 2013;551:37–43.
  • Chen G, Zhao S, Tan P, et al. A comparative study of Ti–6Al–4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technol. 2018;333:38–46.
  • Özbilen S. Satellite formation mechanism in gas atomised powders. Powder Metall. 1999;42(1):70–78.
  • Yolton C, Froes FH. Conventional titanium powder production. Titanium Powder Metall. 2015;333:21–32.
  • Mayer D, Stoffregen HA, Heuss O, et al. Additive manufacturing of active struts for piezoelectric shunt damping. J Intell Mater Syst Struct. 2016;27(6):743–754.
  • Parsa A, Ramsperger M, Kostka A, et al. Transmission electron microscopy of a CMSX-4 Ni-base superalloy produced by selective electron beam melting. Metals. 2016;6(11):258.
  • Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.
  • Kok Y, Tan X, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des. 2018;139:565–586.
  • Gibson I, Rosen DW, Stucker B. Design for additive manufacturing. In: Additive manufacturing technologies. Springer; 2010. p. 299–332.
  • Qiu C, Adkins NJ, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater Sci Eng A. 2013;578:230–239.
  • Raghavan N, Dehoff R, Pannala S, et al. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing. Acta Mater. 2016;112:303–314.
  • Kumar P, Prakash O, Ramamurty U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti–6Al–4V. Acta Mater. 2018;154:246–260.
  • Hrabe N, White R, Lucon E. Effects of internal porosity and crystallographic texture on charpy absorbed energy of electron beam melting titanium alloy (Ti–6Al–4V). Mater Sci Eng A. 2019;742:269–277.
  • LPW Case Study Examines Porosity in Metal 3D Printing, Helps Users Optimize New System — 3DPrint.com — The Voice of 3D Printing/Additive Manufacturing; 2018.
  • Vandenbroucke B, Kruth J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J. 2007;13(4):196–203.
  • Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 2010;58(9):3303–3312.
  • Tammas-Williams S, Zhao H, Léonard F, et al. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by selective electron beam melting. Mater Charact. 2015;102:47–61.
  • Brice CA, Rosenberger BT, Sankaran SN, et al. Chemistry control in electron beam deposited titanium alloys. Mater Sci Forum. 2009;618–619:155–158.
  • Gaytan SM, Murr LE, Medina F, et al. Advanced metal powder based manufacturing of complex components by electron beam melting. Mater Technol. 2009;24(3):180–190.
  • Bauereiß A, Scharowsky T, Körner C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. J Mater Process Technol. 2014;214(11):2522–2528.
  • Kruth JP, Badrossamay M, Yasa E. Part and material properties in selective laser melting of metals. Proceedings of the 16th international symposium on electromachining; 2010, Shanghai, China.
  • Zhao C, Fezzaa K, Cunningham RW, et al. Real-time monitoring of laser powder bed fusion process using high-speed x-ray imaging and diffraction. Sci Rep. 2017;7(1):3602.
  • Zhang T, Li H, Liu S, et al. Evolution of molten pool during selective laser melting of Ti–6Al–4V. J Phys D. 2018;52(5):055302.
  • Edwards P, O'conner A, Ramulu M. Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng. 2013;135(6):061016.
  • Song J, Wu W, Zhang L, et al. Role of scanning strategy on residual stress distribution in Ti–6Al–4V alloy prepared by selective laser melting. Optik. 2018;170:342–352.
  • Sames WJ, List FA, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev. 2016;61(5):315–360.
  • Zhuang JR, Lee YT, Hsieh WH, et al. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol. 2018;103:59–76.
  • Karayagiz K, Elwany A, Tapia G. Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti–6Al–4V. IISE Trans. 2018;51:1–17.
  • Li JQ, Fan TH. Phase-field modeling of metallic powder-substrate interaction in laser melting process. Int J Heat Mass Transfer. 2019;133:872–884.
  • Scharowsky T, Bauereiß A, Körner C. Influence of the hatching strategy on consolidation during selective electron beam melting of Ti–6Al–4V. Int J Adv Manuf Technol. 2017;92(5–8):2809–2818.
  • Yang J, Yu H, Yang H, et al. Prediction of microstructure in selective laser melted Ti–6Al–4V alloy by cellular automaton. J Alloys Compd. 2018;748:281–290.
  • Liu P, Ji Y, Wang Z, et al. Investigation on evolution mechanisms of site-specific grain structures during metal additive manufacturing. J Mater Process Technol. 2018;257:191–202.
  • Sahoo S, Chou K. Phase-field simulation of microstructure evolution of Ti–6Al–4V in electron beam additive manufacturing process. Addit Manuf. 2016;9:14–24.
  • Panwisawas C, Qiu C, Sovani Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr Mater. 2015;105:14–17.
  • Klassen A, Scharowsky T, Körner C. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys D Appl Phys. 2014;47(27):275–303.
  • Solberg J, Hodge N, Ferencz R, et al. Diablo: A parallel, implicit multi-physics finite element code for engineering analysis user manual. LLNL-SM-674096, Lawrence Livermore National Laboratory; 2015.
  • Strantza M, Ganeriwala RK, Clausen B, et al. Coupled experimental and computational study of residual stresses in additively manufactured Ti–6Al–4V components. Mater Lett. 2018;231:221–224.
  • Kapoor K, Yoo YSJ, Book TA, et al. Incorporating grain-level residual stresses and validating a crystal plasticity model of a two-phase Ti–6Al–4V alloy produced via additive manufacturing. J Mech Phys Solids. 2018;121:447–462.
  • Ali H, Ghadbeigi H, Mumtaz K. Residual stress development in selective laser-melted Ti6Al4V: a parametric thermal modelling approach. Int J Adv Manuf Technol. 2018;97(5–8):2621–2633.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.