467
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Nanoindentation creep deformation behaviour of high nitrogen nickel-free austenitic stainless steel

, , , , &
Pages 1592-1599 | Received 10 Jan 2019, Accepted 05 Jun 2019, Published online: 26 Jun 2019

References

  • Simmons JW. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng A. 1996;207:159–169. doi: 10.1016/0921-5093(95)09991-3
  • Koutsky J, Novy Z. Structure analysis of austenitic CrMn steel alloyed by nitrogen. J Mater Process Tech. 1998;78:112–116. doi: 10.1016/S0924-0136(97)00471-8
  • Baba H, Kodama T, Katada Y. Role of nitrogen on the corrosion behavior of austenitic stainless steels. Corros Sci. 2002;44:2393–2407. doi: 10.1016/S0010-938X(02)00040-9
  • Jandova D, Rehor J, Novy Z. Microstructural changes taking place during the thermo-mechanical processing and cold working of steel 18Cr18Mn0.5N. J Mater Process Tech. 2004;157–158:523–530. doi: 10.1016/j.jmatprotec.2004.09.072
  • Bayoumi FM, Ghanem W A. Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions. Mater Lett. 2005;59:3311–3314. doi: 10.1016/j.matlet.2005.05.063
  • Lee T-H, Oh C-S, Kim S-J. Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe–18Cr–10Mn–N steels. Scri Mater. 2008;58:110–113. doi: 10.1016/j.scriptamat.2007.09.029
  • Simmons J W. Influence of nitride (Cr2N) precipitation on the plastic flow behavior of high-nitrogen austenitic stainless steel. Scripta Metallurgicae et Mater. 1995;32:265–270. doi: 10.1016/S0956-716X(99)80048-X
  • Li HB, Jiang ZH, Zhang ZM, et al. Mechanical properties of nickel free high nitrogen austenitic stainless steels. J Iron Steel Res Int. 2007;14(5):330–334. doi: 10.1016/S1006-706X(08)60105-3
  • Lee T-H, Oh C-S, Kim S-J, et al. Deformation twinning in high-nitrogen austenitic stainless steel. Acta Mater. 2007;55:3649–3662. doi: 10.1016/j.actamat.2007.02.023
  • Dai QX, Yuan ZZ, Chen X, et al. High-cycle fatigue behavior of high-nitrogen austenitic stainless steel. Mater Sci Eng A. 2009;517:257–260. doi: 10.1016/j.msea.2009.05.006
  • Shao CW, Shi F, Guo WW, et al. Plastic deformation and damage behaviors of Fe-18Cr-18Mn-0.63N high-nitrogen austenitic stainless steel under uniaxial tension and compression. Mater Trans. 2015;56:46–53. doi: 10.2320/matertrans.M2014262
  • Ma ZS, Long SG, Pan Y, et al. Loading rate sensitivity of nanoindentation creep in polycrystalline Ni films. J Mater Sci. 2008;43:5952–5955. doi: 10.1007/s10853-008-2838-0
  • Liu Y, Huang CX, Bei HB, et al. Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Mater Lett. 2012;70:26–29. doi: 10.1016/j.matlet.2011.11.119
  • Hu JJ, Sun GX, Zhang XP, et al. Effects of loading strain rate and stacking fault energy on nanoindentation creep behaviors of nanocrystalline Cu, Ni-20 wt.%Fe and Ni. J Alloy Compd. 2015;647:670–680. doi: 10.1016/j.jallcom.2015.06.094
  • Ma Y, Peng GJ, Feng YH, et al. Nanoindentation investigation on the creep mechanism in metallic glassy films. Mater Sci Eng A. 2016;651:548–555. doi: 10.1016/j.msea.2015.11.014
  • Yoo B-G, Kim K-S, Oh J-H, et al. Room temperature creep in amorphous alloys: influence of initial strain and free volume. Scri Mater. 2010;63:1205–1208. doi: 10.1016/j.scriptamat.2010.08.034
  • Shen L, Lu P, Wang SJ, et al. Creep behaviour of eutectic SnBi alloy and its constituent phases using nanoindentation technique. J Alloy Compd. 2013;574:98–103. doi: 10.1016/j.jallcom.2013.04.057
  • Kamta PN, Mejias A, Roudet F, et al. Indentation creep analysis of T22 and T91 chromium based steels. Mater Sci Eng A. 2016;652:315–324. doi: 10.1016/j.msea.2015.11.098
  • Liu XY, Zhang QQ, Zhao XC, et al. Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP. Mater Sci Eng A. 2016;676:73–79. doi: 10.1016/j.msea.2016.08.111
  • Haghshenas M, Khalili A, Ranganathan N. On room-temperature nanoindentation response of an Al–Li–Cu alloy. Mater Sci Eng A. 2016;676:20–27. doi: 10.1016/j.msea.2016.08.091
  • Sun SC, Sun GX, Jiang ZH, et al. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel. Chinese Phys B. 2014;23:026104. doi: 10.1088/1674-1056/23/2/026104
  • Sun SC, Mu JW, Jiang ZH, et al. Effect of cold rolling on tensile properties and microstructure of high nitrogen alloyed austenitic steel. Mater Sci Tech. 2014;30:146–151. doi: 10.1179/1743284713Y.0000000422
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564
  • Oliver WC, Pharra GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. doi: 10.1557/jmr.2004.19.1.3
  • Lucas BN, Oliver WC. Indentation power-law Creep of high-purity indium. Metall Mater Trans A. 1999;30A:601–610. doi: 10.1007/s11661-999-0051-7
  • Poisl WH, Oliver WC, Fabes BD. The relationship between indentation and uniaxial Creep in amorphous selenium. J Mater Res. 1995;10:2024–2032. doi: 10.1557/JMR.1995.2024
  • Shen L, Cheong WCD, Foo YL, et al. Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods. Mater Sci Eng A. 2012;532:505–510. doi: 10.1016/j.msea.2011.11.016
  • Su CJ, Herbert EG, Sohn S, et al. Measurement of power-law creep parameters by instrumented indentation methods. J Mech Phys Solids. 2013;61:517–536. doi: 10.1016/j.jmps.2012.09.009
  • Asaro RJ, Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 2005;53:3369–3382. doi: 10.1016/j.actamat.2005.03.047
  • Konopka K, Mizera J, Wyrzykowski JW. The generation of dislocations from twin boundaries and its effect upon the flow stresses in FCC metals. J Mater Process Tech. 2000;99:255–259. doi: 10.1016/S0924-0136(99)00434-3
  • Field DP, True BW, Lillo TM, et al. Observation of twin boundary migration in copper during deformation. Mater Sci Eng A. 2004;372:173–179. doi: 10.1016/j.msea.2003.12.044
  • Shen YF, Lu L, Dao M, et al. Strain rate sensitivity of Cu with nanoscale twins. Scri Mater. 2006;55(4):319–322. doi: 10.1016/j.scriptamat.2006.04.046
  • Mu JW, Jiang ZH, Zheng WT, et al. High-speed creep process mediated by rapid dislocation absorption in nanocrystalline Cu. J Appl Phys. 2012;111(6):063506. doi: 10.1063/1.3694005
  • Mu JW, Sun SC, Jiang ZH, et al. Dislocation-mediated creep process in nanocrystalline Cu. Chinese Phys B. 2013;22:037303. doi: 10.1088/1674-1056/22/3/037303
  • Ma XK, Li FG, Zhao C, et al. Indenter load effects on creep deformation behavior for Ti-10V-2Fe-3Al alloy at room temperature. J Alloy Compd. 2017;709:322–328. doi: 10.1016/j.jallcom.2017.03.175
  • Muhammad M, Masoomi M, Torries B, et al. Depth-sensing time-dependent response of additively manufactured Ti-6Al-4 V alloy. Addit Manuf. 2018;24:37–46. doi: 10.1016/j.addma.2018.09.008
  • Hu JJ, Zhang W, Bi GL, et al. Nanoindentation creep behavior of coarse-grained and ultrafine-grained pure magnesium and AZ31 alloy. Mater Sci Eng A. 2017;698:348–355. doi: 10.1016/j.msea.2017.05.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.