265
Views
8
CrossRef citations to date
0
Altmetric
Short Communication

Microstructural refinement of 6061 and 5052 aluminium alloys by arc oscillation

, &
Pages 1651-1655 | Received 16 Mar 2019, Accepted 23 Jun 2019, Published online: 04 Jul 2019

References

  • Ni ZL, Ye FX. Weldability and mechanical properties of ultrasonic joining of aluminum to copper alloy with an interlayer. Mater Letter. 2017;208:69–72. doi: 10.1016/j.matlet.2017.05.009
  • Yan ZY, Chen SJ, Jiang F, et al. Material flow in variable polarity plasma arc keyhole welding of aluminum alloy. J Manuf Process. 2018;36:480–486. doi: 10.1016/j.jmapro.2018.10.023
  • Liu ZM, Fang YX, Chen SY, et al. Focusing cathode tip characteristics in cooling tungsten. Energy. 2019;167(15):982–993. doi: 10.1016/j.energy.2018.11.045
  • Srinivasa Rao K, Prasad Rao K. Microstructure and pitting corrosion of partially melted zones of Al alloy GTA welds. Mater Sci Technol. 2005;21:1199–1208. doi: 10.1179/174328405X51848
  • Liu HJ, Feng XL. Microstructures and interfacial quality of diffusion bonded TC21 titanium alloy joints. Trans Nonferr Met Soc China. 2011;21:58–64. doi: 10.1016/S1003-6326(11)60678-X
  • Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 2016;106:144–154. doi: 10.1016/j.actamat.2016.01.016
  • Kou S, Le Y. Nucleation mechanism and grain refining of weld metal. Weld J. 1986;65:305–313.
  • Ram GDJ, Murugesan R, Sundaresan S. Fusion zone grain refinement in aluminum alloy welds through magnetic arc oscillation and its effect on tensile behavior. J Mater Eng Perform. 1999;8:513–520. doi: 10.1361/105994999770346521
  • Tseng CF, Savage WF. The effect of arc oscillation in either transverse or longitudinal direction has beneficial effect on the fusion zone microstructure and tends to reduce sensitivity in hot cracking. Weld J. 1971;50:777.
  • Garland JG. Weld pool solidification control. Metal Const Brit Weld J. 1974;21:121–128.
  • David SA. CT Liu: Weldability and hot cracking in thorium-doped iridium alloy. Met Technol. 1980;7(March):102–106. doi: 10.1179/030716980803286540
  • David SA, Liu CT. Modification of weld fusion zone grain structure in thorium-doped iridium alloys. In Grain refinement in casting and welds, Warrendale (PA): Metallurgical Soc of AIME; 1983. p. 249–258.
  • Scarbrough JD, Burgan CE. Reducing hot-short cracking in iridium GTA welds using four-pole oscillation. Weld J. 1984;63(6):54–56.
  • Pearce BP, Kerr HW. Grain refinement in magnetically GTA welds of aluminum alloys stirred GTA welds of aluminum alloys. Metall Trans B. 1981;12B:479–486. doi: 10.1007/BF02654317
  • Cui Y, Xu CL, Han Q. Effect of ultrasonic vibration on unmixed zone formation. Scr Mater. 2006;55:975–978. doi: 10.1016/j.scriptamat.2006.08.035
  • Babu NK, Talari MK, Pana D, et al. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers. Mater Chem Phys. 2012;137:543–551. doi: 10.1016/j.matchemphys.2012.09.056
  • Babu NK, Cross CE. Grain refinement of AZ31 magnesium alloy weldments by AC pulsing technique. Metall Mater Trans A. 2012;43A:4145–4154. doi: 10.1007/s11661-012-1241-2
  • Yuan T, Luo Z, Kou S. Mechanism of grain refining in AZ91 Mg welds by arc oscillation. Sci Tech Weld Join. 2017;22(2):97–103. doi: 10.1080/13621718.2016.1199127
  • Pilling J, Hellawell A. Mechanical deformation of dendrites by fluid flow. Metall Mater Trans A. 1996;27A:229–232. doi: 10.1007/BF02647763
  • Jackson KA, Hunt JD, Uhlmann DR, et al. Trans TMS-AIME. 1966;236:149–160.
  • Sato T, Kurz W, Ikawa K. Experiments on dendrite branch detachment in the Succinonitrile-Camphor alloy. Trans Jpn Inst Met. 1987;28:1012–1021. doi: 10.2320/matertrans1960.28.1012
  • http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6.
  • http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA5052H32.
  • ASTM E112. Standard test methods for determining average grain size. ASTM; 2004.
  • Cross CE, Grong O, Mousavi M. A model for equiaxed grain formation along the weld metal fusion line. Scripta Mater. 1999;40:1139–1144. doi: 10.1016/S1359-6462(99)00023-8
  • Kou S. Welding metallurgy. 2nd ed. Hoboken (NJ): Wiley; 2003.
  • Kim WY, Kang CG, Lee SM. Effect of viscosity on microstructure characteristic in rheological behaviour of wrought aluminium alloys by compression and stirring process. Mater Sci Technol. 2010;26(1):20–30. doi: 10.1179/174328407X226752
  • Park KT, Kwon HJ, Kim WJ, et al. Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process. Mater Sci Eng: A. 2001;316:145–152. doi: 10.1016/S0921-5093(01)01261-8
  • Yu XY, Xing WQ, Ding M. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn–Pb–Zn alloys. Ultrason Sonochem. 2016;31:216–221. doi: 10.1016/j.ultsonch.2016.01.004
  • Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45:103–189. doi: 10.1016/S0079-6425(99)00007-9
  • Morris DG, Gutierrez-Urrutia I, Munoz-Morris MA. Analysis of the strengthening mechanisms in a severely plastically-deformed Al–Mg–Si alloy with submicron grain size. J Mater Sci. 2007;42:1439–1443. doi: 10.1007/s10853-006-0564-z
  • Sabirov I, Barnett MR, Estrin Y, et al. The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scr Mater. 2009;61:181–184. doi: 10.1016/j.scriptamat.2009.03.032
  • Troeger LP, Starke EA. Microstructural and mechanical characterization of a superplastic 6xxx aluminum alloy. Mater Sci Eng A. 2000;277:102–113. doi: 10.1016/S0921-5093(99)00543-2
  • Kashyap BP, Hodgson PD, Estrin Y, et al. Plastic flow properties and microstructural evolution in an ultrafine-grained Al–Mg–Si alloy at elevated temperatures. Metall Mater Trans A. 2009;40:3294–3303. doi: 10.1007/s11661-009-0036-6
  • Moreno-Valle EC, Sabirov I, Perez-Prado MT, et al. Effect of the grain refinement via severe plastic deformation on strength properties and deformation behavior of an Al6061 alloy at room and cryogenic temperatures. Mater Lett. 2011;65:2917–2919. doi: 10.1016/j.matlet.2011.06.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.