1,449
Views
36
CrossRef citations to date
0
Altmetric
Reviews

The electrolyte materials for SOFCs of low-intermediate temperature: review

, , , , ORCID Icon &
Pages 1551-1562 | Received 16 Apr 2019, Accepted 28 Jun 2019, Published online: 11 Jul 2019

References

  • Stambouli AB, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sustain Energy Rev. 2002;6(5):433–455.
  • Gadsbøll RØ, Thomsen J, BangMøller C, et al. Solid oxide fuel cells powered by biomass gasification for high efficiency power generation. Energy. 2017;131:198–206.
  • Ormerod RM. Solid oxide fuel cells. Chem Soc Rev. 2003;32(1):17–28.
  • Menzler NH, Tietz F, Uhlenbruck S, et al. Materials and manufacturing technologies for solid oxide fuel cells. J Mater Sci. 2010;45(12):3109–3135.
  • Jacobson AJ. Materials for solid oxide fuel cells. Chem Mater. 2010;22(3):660–674.
  • Medvedev DA, Lyagaeva JG, Gorbova EV, et al. Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci. 2016;75:38–79.
  • Jiang SP, Chan SH. A review of anode materials development in solid oxide fuel cells. J Mater Sci. 2004;39(14):4405–4439.
  • Rossmeisl J, Bessler WG. Trends in catalytic activity for SOFC anode materials. Solid State Ion Diffus React. 2008;178(31–32):1694–1700.
  • Ralph JM, Schoeler AC, Krumpelt M. Materials for lower temperature solid oxide fuel cells. J Mater Sci. 2001;36(5):1161–1172.
  • Sammes N, Du Y. Intermediate-temperature SOFC electrolytes. Fuel Cell Technol State Perspect. 2005;202:19–34.
  • Inagaki T, Nishiwaki F, Yamasaki S, et al. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte. J Power Sources. 2008;181(2):274–280.
  • Molenda J, Swierczek K, Zajac W. Functional materials for the IT-SOFC. J Power Sources. 2007;173(2):657–670.
  • Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci. 1975;10(9):1527–1535.
  • Arachi Y, Sakai H, Yamamoto O, et al. Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ion Diffus React. 1999;121(1–4):133–139.
  • Fergus JW. Electrolytes for solid oxide fuel cells. J Power Sources. 2006;162(1):30–40.
  • Kim HJ, Kim M, Neoh KC, et al. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells. J Power Sources. 2016;327:401–407.
  • Shi N, Yu S, Chen S, et al. Dense thin YSZ electrolyte films prepared by a vacuum slurry deposition technique for SOFCs. Ceram Int. 2017;43(1):182–186.
  • Yamamoto O, Takeda Y, Kanno R, et al. Electrical conductivity of polycrystalline tetragonal zirconia ZrO2-M2O3 (M = Sc, Y, Yb). J Mater Sci Lett. 1989;8(2):198–200.
  • Borik MA, Bredikhin SI, Bublik VT, et al. Structure and conductivity of yttria and scandia-doped zirconia crystals grown by skull melting. J Am Ceram Soc. 2017;100(12):5536–5547.
  • Araki W, Koshikawa T, Yamaji A, et al. Degradation mechanism of scandia-stabilised zirconia electrolytes: discussion based on annealing effects on mechanical strength, ionic conductivity, and Raman spectrum. solid state Ionics. Diffus React. 2009;180(28–31):1484–1489.
  • Yamamoto O, Arati Y, Takeda Y, et al. Electrical conductivity of stabilized zirconia with yttria and scandia. Solid State Ion. 1995;79(1):137–142.
  • Badwal SPS, Ciacchi FT, Milosevic D. Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion Diffus React. 2000;136–137:91–99.
  • Badwal SPS, Ciacchi FT, Rajendran S, et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3–Y2O3)–ZrO2(Al2O3). Solid State Ion. 1998;109(3–4):167–186.
  • Shimazu M, Hiwatashi KI, Ando S, et al. The Effect of manganese on phase transformations of Sc2O3 and CeO2 co-dope ZrO2 during the operation of solid oxide fuel cells. 2010.
  • Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ion. 1996;83(1–2):1–16.
  • Wang S, Inaba H, Tagawa H, et al. Nonstoichiometry of Ce0.9Gd0.1O1.95-x. Solid State Ion. 1998;107:73–79.
  • Shirbhate SC, Singh K, Acharya SA, et al. Review on local structural properties of ceria-based electrolytes for IT-SOFC. Ionics (Kiel). 2016;23:1049.
  • Yahiro H, Eguchi K, Arai H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ion Diffus React. 1989;36(1–2):71–75.
  • Leng YJ, Chan SH, Jiang SP, et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ion Diffus React. 2004;170(1–2):9–15.
  • Zha S, Moore A, Abernathy H, et al. GDC-Based low-temperature SOFCs powered by hydrocarbon fuels. J Electrochem Soc. 2004;151(8):A1128.
  • Okkay H, Bayramoglu M, Faruk Öksüzömer M. Ce0.8Sm0.2O1.9 synthesis for solid oxide fuel cell electrolyte by ultrasound assisted co-precipitation method. Ultrason Sonochem. 2012;20(3):978–983.
  • Steele BCH. Appraisal of Ce1− yGdyO2− y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion. 2000;129(1):95–110.
  • Ralph JM. A study of doped ceria electrolytes [Ph.D. Thesis]. University of London, February; 1998.
  • Wang DY, Park DS, Griffith J, et al. Oxygen-ion conductivity and defect interactions in yttria-doped ceria ⋆. Solid State Ion. 1981;2(2):95–105.
  • Shemilt JE, Williams HM. Effects of composition and processing method on the low temperature conductivity of samaria-doped ceria electrolytes. J Mater Sci Lett. 1999;18(21):1735–1737.
  • Andersson DA, Simak SI, Skorodumova NV, et al. Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. USA. 2006;103(10):3518–3521.
  • Buchi Suresh M, Roy J. The effect of strontium doping on densification and electrical properties of Ce0.8Gd0.2O2-δ electrolyte for IT-SOFC application. Ionics (Kiel). 2012;18(3):291–297.
  • Jaiswal N, Kumar D, Upadhyay S, et al. Ceria co-doped with calcium (Ca) and strontium (Sr): a potential candidate as a solid electrolyte for intermediate temperature solid oxide fuel cells. Ionics (Kiel). 2014;20(1):45–54.
  • Arabaci A, Sariboğa V, Faruk Öksüzömer MA. Er and Gd Co-doped ceria-based electrolyte materials for IT-SOFCs prepared by the cellulose-templating method. Metallurgical & Materials Transactions A. 2014;45(11):2282–2288.
  • Madhusudan C, Kasarapu V, Chittimadula M, et al. Structural, electrical and thermal studies on microwave sintered Dy and Pr co-doped ceria ceramics as electrolytes for intermediate temperature solid oxide fuel cells. J Mater Sci: Mater Electron. 2018;29(19):17067–17077.
  • Madhusudan C, Kasarapu V, Chittimadula M, et al. Synthesis and characterization of Y and Dy co-doped ceria solid electrolytes for IT-SOFCs: a microwave sintering. Rare Met. 2018;37:1–8.
  • Venkatesh V, Reddy CV. Thermal and electrical properties of Ce0.8-xPrxSm0.2O2-δ electrolyte materials for IT-SOFC applications. Ionics (Kiel). 2017;23(12):1–13.
  • Arabaci A. Effect of Er, Gd, and Nd co-dopants on the properties of Sm-doped ceria electrolyte for IT-SOFC. Metall Mater Trans A. 2014;48(5):5259–5269.
  • Gao Z, Liu X, Bergman B, et al. Enhanced ionic conductivity of Ce0.8Sm0.2O2-δ by Sr addition. J Power Sources. 2012;208:225–231.
  • Ishihara T, Matsuda H, Takita Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc. 1994;116(9):3801–3803.
  • Feng M, Goodenough JB. A Superior oxide-ion electrolyte. Eur J Solid State Inorg Chem. 1994;31:663–672.
  • Huang KQ, Tichy R, Goodenough JB. Superior perovskite oxide-ion conductor; strontium and magnesium-doped LaGaO3; III. performance tests of single ceramic fuel cells. J Am Ceram Soc. 1998;81:2581–2585.
  • Huang K, Goodenough JB. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer. J Alloys Compds. 2000;303(00):454–464.
  • Islam MS, Davies RA. Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem. 2004;14(1):86.
  • Huang K, Tichy RS, Goodenough JB. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J Am Ceram Soc. 1998;81(10):11.
  • Lu XC, Zhu JH. Effect of Sr and Mg doping on the property and performance of the La1−xSrx Ga1−y MgyO3−δ electrolyte. J Electrochem Soc. 2008;155:B494–B503.
  • Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ion. 1981;3–4:359–363.
  • Iwahara H. Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc. 1988;135(2):529.
  • Bonanos N. Oxide-based protonic conductors: point defects and transport properties. Solid State Ion Diffus React. 2001;145(1–4):265–274.
  • Nowick AS, Du Y. High-temperature protonic conductors with perovskite related structures. Solid State Ionics. 1995;77:137–146.
  • Du Y, Nowick AS. Galvanic cell measurements on a fast proton conducting complex perovskite electrolyte. Solid State Ion Diffus React. 1996;91(1–2):85–91.
  • Nowick AS, Du Y, Liang KC. Some factors that determine proton conductivity in nonstoichiometric complex perovskites. Solid State Ion Diffus React. 1999;125(1–4):303–311.
  • Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370–4387.
  • Brouzgou A, Demin A, Tsiakaras P. Proton-conducting electrolytes for solid oxide fuel cell applications advances in medium and high temperature solid oxide fuel cell technology. 2017.
  • Kreuer KD, et al. Defect interactions in proton conducting perovskite-type oxides. Ber Bunsenges Phys Chem. 1997;101:1344–1350.
  • Iwahara H, Yajima T, Ushida H, et al. Performance of solid oxide fuel cell using proton and oxide ion mixed conductors based on BaCe1–xSmxO3–δ. J Electrochem Soc. 1993;140(6):1687–1691.
  • Akoshima S OM, Kawada T, et al. Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3: part2: the electrical conductivity and diffusion coefficient of BaCe0.9Y0.1O3–δ. Solid State Ion. 2008;179(39):2240–2247.
  • Liang K C, Du Y, Nowick A S. Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ion. 1994;69(2):117–120.
  • Yan RQ, Wang QF, Xie K. A stable and easily sintering BaCe0.7Sn0.1Gd0.2O3–δ electrolyte for solid oxide fuel cells. Ionics (Kiel). 2008;15:501–505.
  • Matsumoto H, Kawasaki Y, Ishihara T, et al. Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants. Electrochem Solid-State Lett. 2007;10(4):B77–B80.
  • Bhide SV. Stability of BaCeO3-based proton conductors in water-containing atmospheres. J Electrochem Soc. 1999;146(6):2038–2044.
  • Medvedev D, Murashkina A, Tsiakaras P, et al. Baceo3: materials development, properties and application. Prog Mater Sci. 2014;60:72–129.
  • Zhao L, Tan W, Zhong Q. The chemical stability and conductivity improvement of protonic conductor BaCe0.8−x ZrxY0.2O3−δ. Ionics (Kiel). 2013;19(12):1745–1750.
  • Su XT, Yan QZ, Ma XH, et al. Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ion. 2006;177(11):1041–1045.
  • Bi L, Fang SM, Liu W, et al. Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membranes based on a solid state reaction. J Eur Ceram Soc. 2009;29(12):2567–2573.
  • Norby T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion Diffus React. 1999;125(1–4):1–11.
  • Phair JW, Badwal SPS. Review of proton conductors for hydrogen separation. Ionics (Kiel). 2006;12(2):103–115.
  • Wienstroer S, Wiemhofer HD. Investigation of the influence of zirconium substitution on the properties of neodymium-doped barium cerates. Solid State Ion Diffus React. 1997;101–103(part-P2):1113–1117.
  • Schneller T, Schober T. Chemical solution deposition prepared dense proton conducting Y-doped BaZrO3 thin films for SOFC and sensor devices. Solid State Ion Diffus React. 2003;164(3–4):131–136.
  • Katahira K, Kohchi Y, Shimura T, et al. Protonic conduction in Zr-substituted BaCeO3. Solid State Ion Diffus React. 2000;138(1–2):91–98.
  • Zhong Z. Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems. Solid State Ion Diffus React. 2007;178(3–4):213–220.
  • Taniguchi N, Nishimura C, Kato J. Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors. Solid State Ion Diffus React. 2001;145(1–4):349–355.
  • Shimada T, Wen C, Taniguchi N, et al. The high temperature proton conductor BaZr0.4Ce0.4In0.2O3-α. J Power Sources. 2004;131(1–2):289–292.
  • Jander W. Neuere Forschungen uber diffusion and elektrische Leitfahigkeit fester Salze. Angew Chem. 1929;42(19):462–467.
  • Liang CC. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J Electrochem Soc. 1973;120(10):1289.
  • Ma Y, Wang X, Raza R. Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs. Int J Hydrogen Energy. 2010;3(7):2580–2585.
  • Huang J, Mao Z, Liu Z, et al. Development of novel low-temperature SOFCs with co-ionic conducting SDC-carbonate composite electrolytes. Electrochem commun. 2007;9(10):2601–2605.
  • Zhu W, Xia C, Ding D, et al. Electrical properties of ceria-carbonate composite electrolytes. Mater Res Bull. 2006;41(11):2057–2064.
  • Zhu B. Next generation fuel cell R&D. Int J Energy Res. 2006;30(11):895–903.
  • Di J, Chen M, Wang C, et al. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. J Power Sources. 2010;195(15):4695–4699.
  • Zhao YC, Xia C, Xu ZR, et al. Validation of H+/O2- conduction in doped ceria-carbonate composite material using an electrochemical pumping method. Int J Hydrogen Energy. 2012;37(15):11378–11382.
  • Zhao YC, Xu ZR, Xia C, et al. Oxide ion and proton conduction in doped ceria-carbonate composite materials. Int J Hydrogen Energy. 2013;38(3):1553–1559.
  • Wang X, Ma Y, Li S, et al. Ceria-based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells. J Power Sources. 2011;196(5):2754–2758.
  • Zhu B, Li S, Mellander BE. Theoretical approach on ceria-based two-phase electrolytes for low temperature (300∼600 C) solid oxide fuel cells. Electrochem commun. 2008;10(2):302–305.
  • Zhao Y, Xia C, Wang Y, et al. Quantifying multi-ionic conduction through doped ceria-carbonate composite electrolyte by a current-interruption technique and product analysis. Int J Hydrogen Energy. 2012;37(10):8556–8561.
  • Zhao L, Fan LZ, Zhou MQ, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater. 2010;22(45):5202–5206.
  • Huang J, Mao Z, Liu Z, et al. Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes. J Power Sources. 2008;175(1):238–243.
  • Xia C, Li Y, Tian Y, et al. A high performance composite ionic conducting electrolyte for intermediate temperature fuel cell and evidence for ternary ionic conduction. J Power Sources. 2009;188(1):156–162.
  • Xia C, Li Y, Tian Y, et al. Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte. J Power Sources. 2010;195(10):3149–3154.
  • Gao Z, Huang J, Mao Z, et al. Preparation and characterization of nanocrystalline Ce0.8Sm0.2O1.9 for low temperature solid oxide fuel cells based on composite electrolyte. Int J Hydrogen Energy. 2010;35(2):731–737.
  • Chockalingam R, Basu S. Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. Int J Hydrogen Energy. 2011;36(22):14977–14983.
  • Huang J, Gao Z, Mao Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs. Int J Hydrogen Energy. 2010;35(9):4270–4275.
  • Zhang L, Lan R, Xu X, et al. A high performance intermediate temperature fuel cell based on a thick oxide-carbonate electrolyte. J Power Sources. 2009;194(2):967–971.
  • Raza R, Wang X, Ma Y, et al. Study on calcium and samarium co-doped ceria based nanocomposite electrolytes. J Power Sources. 2010;195(19):6491–6495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.