369
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Ferrite recrystallisation and intercritical annealing of cold-rolled low alloy medium carbon steel

, ORCID Icon & ORCID Icon
Pages 1932-1941 | Received 14 May 2019, Accepted 11 Aug 2019, Published online: 04 Sep 2019

References

  • Smith WF. Structure and properties of engineering alloys. New York (NY): McGraw-Hill; 1993.
  • Campbell FC. Elements of metallurgy and engineering alloys. Materials Park (OH): ASM International; 2008.
  • Ebrahimi GR, Momeni A, Kazemi S, et al. Flow curves, dynamic recrystallization and precipitation in a medium carbon low alloy steel. Vacuum. 2017;142:135–145. doi: 10.1016/j.vacuum.2017.05.010
  • Cabrera JM, Jonas JJ, Prado JM. Flow behaviour of medium carbon microalloyed steel under hot working conditions. Mater Sci Tech. 1996;12:579–585. doi: 10.1179/mst.1996.12.7.579
  • Zhang C, Zhang L, Xu Q, et al. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process. Mater Sci Eng A. 2016;678:33–43. doi: 10.1016/j.msea.2016.09.056
  • Gu SD, Zhang LW, Ruan JH, et al. Constitutive modeling of dynamic recrystallization behavior and processing map of 38MnVS6 non-quenched steel. J Mater Eng Perform. 2013;23:1062–1068. doi: 10.1007/s11665-013-0808-4
  • Chen MS, Yuan WQ, Lin YC, et al. Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method. Vacuum. 2017;146:142–151. doi: 10.1016/j.vacuum.2017.09.041
  • Wang Z, Liu X, Xie F, et al. Dynamic recrystallization behavior and critical strain of 51CrV4 high-strength spring steel during hot deformation. JOM. 2018;70:2385–2391. doi: 10.1007/s11837-018-3054-2
  • Saadatkia S, Mirzadeh H, Cabrera JM. Hot deformation behavior, dynamic recrystallization, and physically-based constitutive modeling of plain carbon steels. Mater Sci Eng A. 2015;636:196–202. doi: 10.1016/j.msea.2015.03.104
  • Bianchi JH, Karjalainen LP. Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel. J Mater Process Technol. 2005;160:267–277. doi: 10.1016/j.jmatprotec.2004.06.016
  • Lin YC, Chen MS, Zhong J. Study of metadynamic recrystallization behaviors in a low alloy steel. J Mater Process Technol. 2009;209:2477–2482. doi: 10.1016/j.jmatprotec.2008.05.047
  • Carsí M, López V, Peñalba F, et al. The strain rate as a factor influencing the hot forming simulation of medium carbon microalloyed steels. Mater Sci Eng A. 1996;216:155–160. doi: 10.1016/0921-5093(96)10405-6
  • Ayada M, Yuga M, Tsuji N, et al. Effect of vanadium and niobium on restoration behavior after hot deformation in medium carbon spring steels. ISIJ Int. 1998;38:1022–1031. doi: 10.2355/isijinternational.38.1022
  • Medina SF, Quispe A, Valles P, et al. Recrystallization-precipitation interaction study of two medium carbon niobium microalloyed steels. ISIJ Int. 1999;39:913–922. doi: 10.2355/isijinternational.39.913
  • Lin YC, Chen MS, Zhong J. Study of static recrystallization kinetics in a low alloy steel. Comput Mater Sci. 2008;44:316–321. doi: 10.1016/j.commatsci.2008.03.027
  • Herrera C, Lima NB, Filho AF, et al. Texture and mechanical properties evolution of a deep drawing medium carbon steel during cold rolling and subsequent recrystallization. J Mater Process Technol. 2009;209:3518–3524. doi: 10.1016/j.jmatprotec.2008.08.007
  • Alaneme KK. Influence of tempered microstructures on the transformation behaviour of cold deformed and intercritically annealed medium carbon low alloy steel. Mater Res. 2010;13:203–209. doi: 10.1590/S1516-14392010000200014
  • Erişira E, Bilirb OG. Nucleation and growth of austenite from martensite during reaustenization using phase field modeling. J Mater Eng Perform. 2013;23:1055–1061. doi: 10.1007/s11665-013-0848-9
  • Fereiduni E, Ghasemi Banadkouki SS. Improvement of mechanical properties in a dual-phase ferrite–martensite AISI4140 steel under tough-strong ferrite formation. Mater Des. 2014;56:232–240. doi: 10.1016/j.matdes.2013.11.005
  • Sabet Ghorabaei A, Ghasemi Banadkouki SS. Abnormal mechanical behavior of a medium-carbon steel under strong ferrite-pearlite-martensite triple-phase microstructures. Mater Sci Eng A. 2017;700:562–573. doi: 10.1016/j.msea.2017.06.035
  • de la Concepción VL, Lorusso HN, Svoboda HG. Effect of carbon content on microstructure and mechanical properties of dual phase steels. Proc Mater Sci. 2015;8:1047–1056. doi: 10.1016/j.mspro.2015.04.167
  • Hernández-Silva D, Morales RD, Cabañas-Moreno JG. The spheroidization of cementite in a medium carbon steel by means of subcritical and intercritical annealing. ISIJ Int. 1992;32:1297–1305. doi: 10.2355/isijinternational.32.1297
  • Tyagi R, Nath SK, Ray S. Development of wear resistant medium carbon dual phase steels and their mechanical properties. Mater Sci Tech. 2004;20:645–652. doi: 10.1179/026708304225012062
  • Zamani M, Mirzadeh H, Ghasemi HM. Mechanical properties and fracture behavior of intercritically annealed AISI 4130 chromoly steel. Mater Res Express. 2018;5:066548. doi: 10.1088/2053-1591/aacd96
  • Jamei F, Mirzadeh H, Zamani M. Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel. Mater Sci Eng A. 2019;750:125–131. doi: 10.1016/j.msea.2019.02.052
  • Das D, Chattopadhyay PP. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J Mater Sci. 2009;44:2957–2965. doi: 10.1007/s10853-009-3392-0
  • Schemmann L, Zaefferer S, Raabe D, et al. Alloying effects on microstructure formation of dual phase steels. Acta Mater. 2015;95:386–398. doi: 10.1016/j.actamat.2015.05.005
  • Shukla N, Das S, Maji S, et al. Effect of pre-intercritical annealing treatments on the microstructure and mechanical properties of 0.33% carbon dual-phase steel. J Mater Eng Perform. 2015;24:4958–4965. doi: 10.1007/s11665-015-1750-4
  • Ghaemifar S, Mirzadeh H. Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel. Steel Res Int. 2018;89:1700531. doi: 10.1002/srin.201700531
  • Ghaemifar S, Mirzadeh H. Enhanced mechanical properties of dual-phase steel by repetitive intercritical annealing. Can Metall Q. 2017;56:459–463. doi: 10.1080/00084433.2017.1361223
  • Azizi-Alizamini H, Militzer M, Poole WJ. Formation of ultrafine grained dual phase steels through rapid heating. ISIJ Int. 2011;51:958–964. doi: 10.2355/isijinternational.51.958
  • Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel. Metall Mater Trans A. 2017;48:4565–4573. doi: 10.1007/s11661-017-4246-z
  • Nakada N, Arakawa Y, Park KS, et al. Dual phase structure formed by partial reversion of cold-deformed martensite. Mater Sci Eng A. 2012;553:128–133. doi: 10.1016/j.msea.2012.06.001
  • Deng Y, Di H, Misra RDK. On significance of initial microstructure in governing mechanical behavior and fracture of dual-phase steels. J Iron Steel Res Int. 2018;25:932–942. doi: 10.1007/s42243-018-0133-0
  • Nouroozi M, Mirzadeh H, Zamani M. Effect of microstructural refinement and intercritical annealing time on mechanical properties of high-formability dual phase steel. Mater Sci Eng A. 2018;736:22–26. doi: 10.1016/j.msea.2018.08.088
  • Nikkhah S, Mirzadeh H, Zamani M. Improved mechanical properties of mild steel via combination of deformation, intercritical annealing, and quench aging. Mater Sci Eng A. 2019;756:268–271. doi: 10.1016/j.msea.2019.04.071
  • Nikkhah S, Mirzadeh H, Zamani M. Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing. Mater Chem Phys. 2019;230:1–8. doi: 10.1016/j.matchemphys.2019.03.053
  • Dutta T, Dey S, Datta S, et al. Designing dual-phase steels with improved performance using ANN and GA in tandem. Comput Mater Sci. 2019;157:6–16. doi: 10.1016/j.commatsci.2018.10.020
  • Wang S, Wei K, Li J, et al. Enhanced tensile properties of 316L stainless steel processed by a novel ultrasonic resonance plastic deformation technique. Mater Lett. 2019;236:342–345. doi: 10.1016/j.matlet.2018.10.080
  • Naghizadeh M, Mirzadeh H. Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel. Metall Mater Trans A. 2018;49:2248–2256. doi: 10.1007/s11661-018-4583-6
  • Li J, Fang C, Liu Y, et al. Deformation mechanisms of 304L stainless steel with heterogeneous lamella structure. Mater Sci Eng A. 2019;742:409–413. doi: 10.1016/j.msea.2018.11.047
  • Mao Q, Gao B, Li J, et al. Enhanced tensile properties of 316L steel via grain refinement and low-strain rolling. Mater Sci Tech. 2019;35:1497–1503. doi: 10.1080/02670836.2019.1630088
  • Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90–96. doi: 10.1016/j.msea.2019.05.028
  • Gang UG, Lee JC, Nam WJ. Effect of prior microstructures on the behavior of cementite particles during subcritical annealing of medium carbon steels. Met Mater Int. 2009;15:719–725. doi: 10.1007/s12540-009-0719-3
  • Xu L, Chen L, Sun W. Effects of soaking and tempering temperature on microstructure and mechanical properties of 65Si2MnWE spring steel. Vacuum. 2018;154:322–332. doi: 10.1016/j.vacuum.2018.05.029
  • Nasiri Z, Mirzadeh H. Enhancement of work-hardening behavior of dual phase steel by heat treatment. Materialwiss Werkst. 2018;49:1081–1086. doi: 10.1002/mawe.201700122
  • Krajewski S, Nowacki J. Dual-phase steels microstructure and properties consideration based on artificial intelligence techniques. Arch Civ Mech Eng. 2014;14:278–286. doi: 10.1016/j.acme.2013.10.002
  • Naghizadeh M, Mirzadeh H. Modeling the kinetics of deformation-induced martensitic transformation in AISI 316 metastable austenitic stainless steel. Vacuum. 2018;157:243–248. doi: 10.1016/j.vacuum.2018.08.066
  • Rafiei M, Mirzadeh H, Malekan M, et al. Homogenization kinetics of a typical nickel-based superalloy. J Alloy Compd. 2019;793:277–282. doi: 10.1016/j.jallcom.2019.04.147
  • Christian JW. The theory of Transformations in metals and Alloys, Part 1, Third edition. Oxford (UK): Pergamon Press; 2002.
  • Hall EO. Yield point phenomena in metals and alloys. New York (NY): Plenum Press; 1970.
  • Sodjit S, Uthaisangsuk V. Microstructure based prediction of strain hardening behavior of dual phase steels. Mater Des. 2012;41:370–379. doi: 10.1016/j.matdes.2012.05.010
  • Tasan CC, Diehl M, Yan D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design. Annu Rev Mater Res. 2015;45:391–431. doi: 10.1146/annurev-matsci-070214-021103
  • Maleki M, Mirzadeh H, Zamani M. Effect of intercritical annealing on mechanical properties and work-hardening response of high formability dual phase steel. Steel Res Int. 2018;89:1700412. doi: 10.1002/srin.201700412
  • Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civ Mech Eng. 2008;8:103–117. doi: 10.1016/S1644-9665(12)60197-6
  • Razzaghi M, Mirzadeh H, Emamy M. Unraveling the effects of Zn addition and hot extrusion process on the microstructure and mechanical properties of as-cast Mg–2Al magnesium alloy. Vacuum. 2019;167:214–222. doi: 10.1016/j.vacuum.2019.06.013
  • Zamani R, Mirzadeh H, Emamy M. Mechanical properties of a hot deformed Al-Mg2Si in-situ composite. Mater Sci Eng A. 2018;726:10–17. doi: 10.1016/j.msea.2018.04.064
  • Pourbahari B, Mirzadeh H, Emamy M, et al. Enhanced ductility of a fine-grained Mg-Gd-Al-Zn magnesium alloy by hot extrusion. Adv Eng Mater. 2018;20:1701171. doi: 10.1002/adem.201701171
  • Kalhor A, Mirzadeh H. Tailoring the microstructure and mechanical properties of dual phase steel based on the initial microstructure. Steel Res Int. 2017;88:1600385. doi: 10.1002/srin.201600385

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.