163
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Microstructural evolution and strain hardening mechanism of a boron-containing metastable austenitic steel

, ORCID Icon, , &
Pages 2013-2023 | Received 23 Mar 2019, Accepted 26 Aug 2019, Published online: 10 Sep 2019

References

  • Tsakiris V, Edmonds DV. Martensite and deformation twinning in austenitic steels. Mater Sci Eng A. 1999;273–275:430–436. doi: 10.1016/S0921-5093(99)00322-6
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000;16:1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Fischer FD, Reisner G, Werner E, et al. A new view on transformation induced plasticity (TRIP). Int J Plast. 2000;16:723–748. doi: 10.1016/S0749-6419(99)00078-9
  • Das A, Sivaprasad S, Ghosh M, et al. Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel. Mater Sci Eng A. 2008;48:6283–6286.
  • Fujita H, Ueda S. Stacking faults and fcc(γ)→ hcp(ϵ) transformation in 188-type stainless steel. Acta Metall. 1972;20:759–767. doi: 10.1016/0001-6160(72)90104-6
  • Brooks JW, Loretto MH, Smallman RE. In situ observations of the formation of martensite in stainless steel. Acta Metall. 1979;27:1829–1838. doi: 10.1016/0001-6160(79)90073-7
  • Gey N, Petit B, Humbert M. Electron backscattered diffraction study of ϵ/α′ martensitic variants induced by plastic deformation in 304 stainless steel. Metall Mater Trans A. 2005;36:3291–3299. doi: 10.1007/s11661-005-0003-9
  • Humbert M, Petit B, Bolle B, et al. Analysis of the γ–ϵ–α′ variant selection induced by 10% plastic deformation in 304 stainless steel at −60° C. Mater Sci Eng A. 2007;454–455:508–517. doi: 10.1016/j.msea.2006.11.112
  • Huang CX, Yang G, Gao YL, et al. Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation. J Mater Res. 2007;22:724–729. doi: 10.1557/jmr.2007.0094
  • Scott C, Remy B, Collet J–L, et al. Precipitation strengthening in high manganese austenitic TWIP steels. Int J Mater Res. 2011;102:538–549. doi: 10.3139/146.110508
  • Bayraktar E, Khalid FA, Levaillant C. Deformation and fracture behavior of high manganese austenitic steel. J Mater Process Technol. 2004;147:145–154. doi: 10.1016/j.jmatprotec.2003.10.007
  • Bouaziz O, Zurob H, Chehab B, et al. Effect of chemical composition on work hardening of Fe–Mn–C TWIP steels. Mater Sci Technol. 2011;27:707–709. doi: 10.1179/026708309X12535382371852
  • Lai HJ, Wan CM. The study of work hardening in Fe–Mn–Al–C alloys. J Mater Sci. 1989;24:2449–2453. doi: 10.1007/BF01174510
  • Liang X, McDermid JR, Bouaziz O, et al. Microstructural evolution and strain hardening of Fe–24Mn and Fe–30Mn alloys during tensile deformation. Acta Mater. 2009;57:3978–3988. doi: 10.1016/j.actamat.2009.05.003
  • Kang S, Jung Y–S, Jun J–H, et al. Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A. 2010;527:745–751. doi: 10.1016/j.msea.2009.08.048
  • Liang ZY, Li YZ, Huang MX. The respective hardening contributions of dislocations and twins to the flow stress of a twinning–induced plasticity steel. Scr Mater. 2016;112:28–31. doi: 10.1016/j.scriptamat.2015.09.003
  • Tian YZ, Bai Y, Zhao LJ, et al. A novel ultrafine–grained Fe–22Mn–0.6C TWIP steel with superior strength and ductility. Mater Charact. 2017;126:74–80. doi: 10.1016/j.matchar.2016.12.026
  • Rahman KM, Vorontsov VA, Dye D. The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 2015;89:247–257. doi: 10.1016/j.actamat.2015.02.008
  • Dini G, Najafizadeh A, Ueji R, et al. Improved tensile properties of partially recrystallized submicron grained TWIP steel. Mater Lett. 2010;64:15–18. doi: 10.1016/j.matlet.2009.09.057
  • Zhou P, Liang Z, Liu R, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater. 2016;111:96–107. doi: 10.1016/j.actamat.2016.03.057
  • Askari-Paykani M, Shahverdi HR, Miresmaeili R. Effect of boron addition on microstructural evolution and room-temperature mechanical properties of novel Fe66−x CrNiB x Si (x = 0, 0.25, 0.50 and 0.75 Wt Pct) advanced high-strength steels. Metall Trans A. 2016;47:5423–5437. doi: 10.1007/s11661-016-3713-2
  • Choi JH, Jo MC, Lee H, et al. Cu addition effects on TRIP to TWIP transition and tensile property improvement of ultra-high-strength austenitic high-Mn steels. Acta Mater. 2019;166:246–260. doi: 10.1016/j.actamat.2018.12.044
  • Field DM, Qing JJ, Aken DCV. Chemistry and properties of medium-Mn Two-stage TRIP steels. Metall Mater Trans A. 2018;49:4615–4632. doi: 10.1007/s11661-018-4798-6
  • Venables JA. Deformation twinning in face-centred cubic metals. Philos Mag. 1962;7:35–44. doi: 10.1080/14786436208201856
  • Hiroshi F, Tetsuya K. In-situ observation of strain-induced γ→ϵ→α′ and γ→α′ martensitic transformations in Fe–Cr–Ni Alloys. Mater Trans JIM. 1992;33:243–251. doi: 10.2320/matertrans1989.33.243
  • Cai ZH, Ding H, Misra RDK, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015;84:229–236. doi: 10.1016/j.actamat.2014.10.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.