170
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structural-modelling and experimental validation of percolation threshold for nanotube-polyurethane shape memory system

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 2024-2037 | Received 30 May 2019, Accepted 26 Aug 2019, Published online: 11 Sep 2019

References

  • Huang WM, Yang B, Yong FQ. Polyurethane shape memory polymers. Boca Raton: CRC Press; 2012; ISBN: 9781138075009.
  • Meng H, Guoqiang L. A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf). 2013;54(9):2199–2221. doi: 10.1016/j.polymer.2013.02.023
  • Yong H, Xiniya Z, James R. The role of diisocyanate structure on microphase separation of solution polymerised polyureas. Polymer (Guildf). 2012;55:906–913.
  • Arun DI, Chakravarthy P, Arockiakumar R, et al. Shape memory materials. Boca Raton: CRC Press; 2018; ISBN: 9780815359692.
  • Moudam O, Andrews T, Lekakou C, et al. Carbon nanotube-epoxy nanocomposites: correlation and integration of dynamic impedance, dielectric, and mechanical analyses. J Nanomater. 2013; doi:10.1155/2013/801850.
  • Markoulidis F, Lei C, Lekakou C, et al. A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes. Carbon N Y. 2014;68:58–66. doi: 10.1016/j.carbon.2013.08.040
  • Lei C, Lekakou C. Activated carbon–carbon nanotube nanocomposite coatings for supercapacitor applications. Surf Coat Technol. 2013;232:326–330. doi: 10.1016/j.surfcoat.2013.05.027
  • Ahir SV, Huang YY, Terentjev EM. Polymers with aligned carbon nanotubes: active composite materials. Polymer (Guildf). 2008;49(18):3841–3854. doi: 10.1016/j.polymer.2008.05.005
  • Lu H, Yao Y, Lin L. Carbon-based reinforcement in shape-memory polymer composite for electrical actuation. Pigment Resin Technol. 2013;43(1):26–34. doi: 10.1108/PRT-08-2013-0075
  • Balasubramanian M. Composite materials and processing. Boca Raton: CRC Press; 2014; ISBN: 9781439879351.
  • Thess A, Lee R, Nikolae P, et al. Crystalline ropes of metallic carbon nanotubes. Science. 1996;273(5274):483–487. doi:10.1126/science.273.5274.483.
  • Berber S, Kwon Y-K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000;84(20):4613–4616. doi: 10.1103/PhysRevLett.84.4613
  • Martin CA, Sandler JKW, Shaffer MSP, et al. Formation of percolating networks in multi-walled carbon nanotube epoxy composites. Compos Sci Technol. 2004;64(15):2309–2316. doi: 10.1016/j.compscitech.2004.01.025
  • Yoshino K, Kajii H, Araki H, et al. Electrical and optical properties of conducting polymer-fullerene and conducting polymer-nanotube composites. Full Sci Technol. 1999;7(4):695–711. doi: 10.1080/10641229909351371
  • Coleman JN, Curran S, Dalton AB, et al. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys Rev B. 1998;58(12):R7492–R7495. doi: 10.1103/PhysRevB.58.R7492
  • Bauhover W, Kovacs JZ. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol. 2009;69:1486–1498. doi: 10.1016/j.compscitech.2008.06.018
  • Progelhof RC, Throne J, Ruetsch RR. Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci. 1976;16:615–625. doi:10.1002/pen.760160905.
  • Zeng X, Xu X, Shenai PM, et al. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites. J Phys Chem C. 2011;115(44):21685–21690. doi:10.1021/jp207388n.
  • Oskouyi AB, Mertiny P. Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks. Procedia Eng. 2011;10:403–408. doi: 10.1016/j.proeng.2011.04.068
  • Powell MJD. Advances in optimisation and numerical analysis. In: Gomez S, Hennart J-P, editors. Dordrecht: Kluwer Academic; 1994. p. 51–67.
  • Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys. 1963;34:1793–1803. doi: 10.1063/1.1702682
  • Qian Q, An X, Zhao H, et al. Numerical investigations on random close packings of cylindrical particles with different aspect ratios. Powder Technol. 2019;343:79–86. doi: 10.1016/j.powtec.2018.11.014
  • Razavi R, Zare Y. A two-step model for the tunneling conductivity of polymer carbon nanotube nanocomposites assuming the conduction of interphase regions. RSC Adv. 2017;7:50225–50233. doi:10.1039/c7ra08214b.
  • Jang S-H, Yin H. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation. Mater Res Express. 2015;2:045602–045613. doi:10.1088/2053-1591/2/4/045602.
  • Johnson OK, Seegmiller D, Fullwood DT, et al. Characterisation of electrical properties of polymers for conductive nanocomposites. SAMPE 2011: Acc. No: ADA578048. Available from: https://apps.dtic.mil/dtic/tr/fulltext/u2/a578048.pdf.
  • Keith JM, King J, Barton RL. Electrical conductivity modeling of carbon-filled liquid-crystalline polymer composites. J Appl Polym Sci. 2006;102:3293–3300. doi:10.1002/app.24748.
  • Arun DI, Santhosh Kumar KS, Satheesh Kumar B, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems. Mater Sci Technol. 2019;35(5):596–605. doi:10.1080/02670836.2019.1575054.
  • Rance GA, Marsh DH, Nicholas R, et al. UV–vis absorption spectroscopy of carbon nanotubes: relationship between the π-electron plasmon and nanotube diameter. Chem Phys Lett. 2010;493:19–23. doi:10.1016/j.cplett.2010.05.012.
  • Robert AO, William TS. High solids internally UV stabilised melamine cured urethane paint. United States Patent, 1983: 4387194.
  • Bokobza L, Zhang J. Raman spectroscopic characterisation of multiwall carbon nanotubes and of composites. Express Polym Lett. 2012;6(7):601–608. doi:10.3144/expresspolymlett.2012.63.
  • Kiraly A, Ronkay F. Temperature dependence of electrical properties in conductive polymer composites. Polym Test. 2015;43:154–162. doi:10.1016/j.polymertesting.2015.03.011.
  • Khare KS, Khare R. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy carbon nanotube nanocomposites: role of interfacial interactions. J Phys Chem B. 2013;117:7444–7454. doi:10.1021/jp401614p.
  • Allaoui A, El Bounia N. How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites? Express Polym Lett. 2009;3(9):588–594. doi:10.3144/expresspolymlett.2009.73.
  • Esawi A, Farag M. Carbon nanotube reinforced composites: potential and current challenges. Mater Des. 2007;28:2394–2401. doi:10.1016/j.matdes.2006.09.022.
  • Coleman JN, Khana U, Blaua WJ, et al. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon N Y. 2006;44(9):1624–1652. doi: 10.1016/j.carbon.2006.02.038
  • Sahoo NG, Rana S, Cho JW, et al. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35:837–867. doi: 10.1016/j.progpolymsci.2010.03.002
  • Kuan H-C, Ma C-CM, Chang W-P, et al. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol. 2005;65:1703–1710. doi: 10.1016/j.compscitech.2005.02.017
  • Xiaomei Z, Xu X, Shenai PM, et al. Characteristics of the electrical percolation in carbon nanotubes/polymer nanocomposites [PhD thesis]. School of Materials science and Engineering NTU; 2011.
  • Scott K. Percolation and conduction. Rev Mod Phys. 1973;45(4):574–588. doi: 10.1103/RevModPhys.45.574
  • Arun DI, Chakravarthy P, Girish BS, et al. Experimental and Monte Carlo simulation studies on percolation behaviour of shape memory polyurethane carbon black nanocomposite. Smart Mater Struct. 2019;28(5). doi:10.1088/1361-665X/ab083b.
  • Shafeer MSP, Fan X, Windle AH. Dispersion and packing of carbon nanotubes. Carbon N Y. 1998;36(11):1603–1612. doi: 10.1016/S0008-6223(98)00130-4
  • Akos A. Modelling of an electroactive polymer actuator. Procedia Eng. 2012;48:1–9. doi: 10.1016/j.proeng.2012.09.477
  • Huang WM. Thermo-moisture responsive polyurethane shape memory polymer for biomedical devices. Open Med Dev J. 2010;2:11–19. doi: 10.2174/1875181401002020011
  • Ahmad M, Xu B, Purnawali H, et al. High performance shape memory polyurethane synthesised with high molecular weight polyol as the soft segment. Appl Sci. 2012;2:535–548. doi: 10.3390/app2020535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.